ORGANIC
LETTERS
2006
Vol. 8, No. 18
4165-4167
Total Synthesis of (R)-Telomestatin
Takayuki Doi,*,† Masahito Yoshida,† Kazuo Shin-ya,§,‡ and Takashi Takahashi*,†
Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro, Tokyo 152-8552, Japan, The UniVersity of Tokyo, Institute of Molecular and
Cellular Biosciences, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and National
Institute of AdVanced Industrial Science and Technology (AIST), Biological
Information Research Center (BIRC), Protein Network Team, Low M.W. Chemical
Laboratory, AIST Tokyo Waterfront Bio-IT Research Building, 2-42 Aomi, Koto-ku,
Tokyo 135-0064, Japan
doit@apc.titech.ac.jp; ttak@apc.titech.ac.jp
Received July 21, 2006
ABSTRACT
We have achieved a total synthesis of telomestatin, and its absolute configuration was determined to be (R). Coupling of cysteine-containing
trisoxazole amine and serine-containing trisoxazole carboxylic acid, followed by macrocyclization, provided a 24-membered diamide. The
seventh oxazole ring was formed by a Shin’s procedure via dehydroamide. Cyclodehydration of a modified (R)-cysteine-(S-tBu) moiety using
Kelly’s method (PPh3(O)−Tf2O) with anisole furnished (R)-telomestatin, whose CD spectrum was in good agreement with that of the natural
product.
Telomestatin (1), isolated from Streptomyces anulatus 3533-
SV4, is a potent specific telomerase inhibitor (IC50 ) 5.0
nM) because it acts on a human telomere sequence to
stabilize the specific DNA structure called G-quadruplex
without affecting DNA polymerases or reverse trans-
criptases.1-3 The unique macrocyclic structure of telomestatin
consists of the macrocyclic linkage of two methyloxazoles,
five oxazoles, and one thiazoline ring. Although several
synthetic approaches to telomestatin4 and an oligo-oxazole
ring system5 have been reported, a total synthesis of
telomestatin has been reported only in a patent.6 We wish
to report a total synthesis of telomestatin (1) and its complete
stereochemical assignment.
As a thiazoline is labile for hydrolysis, the thiazoline ring
in 1 would be formed at the final stage in the synthesis. We
selected N-Boc-Cys-(S-tBu)-Thr-OMe (2) and 2,5-disubsti-
tuted oxazoles 3 and 4 as the constituent units (Figure 1).
Oxidation of the secondary alcohol in dipeptide 2 with SO3‚
† Tokyo Institute of Technology.
§ The University of Tokyo.
(4) Endoh, N.; Tsuboi, K.; Kim, R.; Yonezawa, Y.; Shin, C. Heterocycles
2003, 60, 1567-1572.
‡ National Institute of Advanced Industrial Science and Technology.
(1) Shin-ya, K.; Wierzba, K.; Matsuo, K.; Ohtani, T.; Yamada, Y.;
Furihata, K.; Hayakawa, Y.; Seto, H. J. Am. Chem. Soc. 2001, 123, 1262-
1263.
(2) (a) Kim, M.-Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.; Hurley,
L. H. J. Am. Chem. Soc. 2002, 124, 2098-2099. (b) Rezler, E. M.;
Seenisamy, J.; Bashyam, S.; Kim, M.-Y.; White, E.; Wilson, W. D.; Hurley,
L. H. J. Am. Chem. Soc. 2005, 127, 9439-9447.
(3) Rosu, F.; Gabelica, V.; Shin-ya, K.; De Pauw, E. Chem. Commun.
2003, 2702-2703.
(5) (a) Chattopadhyay, S. K.; Kempson, J.; McNeil, A.; Pattenden, G.;
Reader, M.; Rippon, D. E.; Waite, D. Perkin Trans. 1 2000, 2415-2428.
(b) Deeley, J.; Pattenden, G. Chem. Commun. 2005, 797-799. (c) Atkins,
J. M.; Vedejs, E. Org. Lett. 2005, 7, 3351-3354. (d) Riego, E.; Herna´ndez,
D.; Albericio, F.; AÄ lvarez, M. Synthesis 2005, 1907-1922. (e) Chatto-
padhyay, S. K.; Biswas, S.; Pal, B. K. Synthesis 2006, 1289-1294.
(6) Yamada, S.; Shigeno, K.; Kitagawa, K.; Okajima, S.; Asao, T. (Taiho
Pharmaceutical Co. Ltd., Sosei Co. Ltd.). WO 200248153; Chem. Abstr.
2002, 137, 47050.
10.1021/ol061793i CCC: $33.50
© 2006 American Chemical Society
Published on Web 08/09/2006