" UV–vis titrations were carried out by addition of a 1 mM solution of the
titrant (either Cu(I) or 4 ) at 298 K in CH2Cl2 to a 10 mM solution of the
other constituent(s) by a micro liter syringe. UV–vis titrations were
analyzed by fitting the whole series of spectra at 0.5 nm intervals using the
software SPECFIT.
a
Table 2 Redox potentials E1/2 of 3 and 6a
E1/2/Va (oxidation)
Cu+/Cu2+
Por/Por2+
E1/2/Va (reduction)
21.15
3
0.70
0.64
0.64
0.63
1.14, Epa = 1.21
Epa = 1.47c
1 (a) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
VCH, Weinheim, 1995; (b) J. W. Steed and J. L. Atwood,
Supramolecular Chemistry, Wiley, Chichester, 2000; (c) Encyclopedia of
Supramolecular Chemistry, ed. J. L. Atwood and J. W. Steed, Marcel
Dekker Ltd., New York, 2004.
3 + pyb
6a
21.11
6a + pyd
a
E1/2 vs. SCE in CH2Cl2 with n-Bu4NPF6 (0.1 M); scan rate 100 mV.
Addition of 1 equiv. of pyridine. Irreversible wave. Addition of
2 equiv. of pyridine.
b
c
d
2 M. Schmittel and V. Kalsani, Top. Curr. Chem., 2005, 245, 1 and
references therein.
3 Attempts towards a bi-metallic grid led to two exclusive grids:
M. Barboiu, E. Petit, A. van der Lee and G. Vaughan, Inorg. Chem.,
2006, 45, 484.
4 (a) D. M. Bassani, J.-M. Lehn, S. Serroni, F. Puntoriero and
S. Campagna, Chem.–Eur. J., 2003, 9, 5936; (b) L. H. Uppadine and
J.-M. Lehn, Angew. Chem., Int. Ed., 2004, 43, 240; (c) L. H. Uppadine,
J.-P. Gisselbrecht, N. Kyritsakas, K. Na¨ttinen, K. Rissanen and
J.-M. Lehn, Chem.–Eur. J., 2005, 11, 2549.
be compared to 2 6 (log K(1+4) + log K3) = 17.2, again hinting at a
small cooperative effect.
Electroanalytical studies of 6a showed a marked difference in
the redox potentials as against those of 3. An anodic shift in the
oxidation and reduction potentials of the porphyrin unit of 6a was
noticed which arises due to coordination of the pyridine to the zinc
metal in the centre of the porphyrin (Table 2). In addition, a
cathodic shift in the oxidation potential of the Cu(I) complex was
noticed. Control experiments with 3 and 6a in the presence of
pyridine clearly indicated that the shift of the Cu(I)/Cu(II) wave in
6a vs. 3 cannot be ascribed to a supramolecular effect, but that it is
due to the electronic influence of the pyridine–Zn binding on the
remote copper complex. Hence, the electroanalytical data confirm
that 5a/6a exists as a dimer with pentacoordinated Zn centres.
In conclusion, we have demonstrated that by appropriate choice
of two non-interfering binding algorithms dynamic supramolecular
heterometallic rectangles can be constructed. The dynamics of
these assemblies was established by metal exchange experiments.
The spectroscopically determined complexation constants suggest
that the two binding modes in the rectangle exhibit a cooperative
influence in the formation of the complex.
5 A. Petitjean, N. Kyritsakas and J.-M. Lehn, Chem. Commun., 2004, 24,
1168.
6 (a) M. Schmittel, A. Ganz and D. Fenske, Org. Lett., 2002, 4, 2289; (b)
M. Schmittel, H. Ammon, V. Kalsani, A. Wiegrefe and C. Michel,
Chem. Commun., 2002, 22, 2566; (c) M. Schmittel, V. Kalsani and
A. Wiegrefe, Chem. Commun., 2004, 24, 490; (d) M. Schmittel and
R. S. K. Kishore, Org. Lett., 2004, 6, 1923; (e) V. Kalsani, H. Ammon,
F. Ja¨ckel, J. P. Rabe and M. Schmittel, Chem.–Eur. J., 2004, 10, 5481;
(f) V. Kalsani, H. Bodenstedt, D. Fenske and M. Schmittel, Eur. J.
Inorg. Chem., 2005, 1841; (g) M. Schmittel, V. Kalsani and J. W. Bats,
Inorg. Chem., 2005, 44, 4115; (h) M. Schmittel, V. Kalsani,
R. S. K. Kishore, H. Co¨lfen and J. W. Bats, J. Am. Chem. Soc.,
2005, 127, 11544.
7 The concept of HETeroleptic PHENanthroline complexation (repre-
sented by an acronym HETPHEN): (a) M. Schmittel and A. Ganz,
Chem. Commun., 1997, 99; (b) M. Schmittel, U. Lu¨ning, M. Meder,
A. Ganz, C. Michel and M. Herderich, Heterocycl. Commun., 1997, 3,
493.
8 (a) K. Funatsu, A. Kimura, T. Imamura, A. Ichimura and Y. Sasaki,
Inorg. Chem., 1997, 36, 1625; (b) K. Funatsu, A. Kimura, T. Imamura,
A. Ichimura and Y. Sasakim, Inorg. Chem., 1998, 37, 1798; (c)
E. Alessio, S. Geremia, S. Mestroni, E. Iengo, I. Srnova and M. Slouf,
Inorg. Chem., 1999, 38, 869; (d) E. Alessio, S. Geremia, S. Mestroni,
I. Srnova, M. Slouf, T. Gianferrara and A. Prodi, Inorg. Chem., 1999,
38, 2527; (e) K. Campbell, R. McDonald, N. R. Branda and
R. R. Tykwinski, Org. Lett., 2001, 3, 1045; (f) M. J. Gunter,
N. Bampos, K. D. Johnstone and K. M. Sanders, New J. Chem.,
2001, 25, 166; (g) E. Iengo, E. Zangrando, S. Mestroni, G. Fronzoni,
M. Stener and E. Alessio, J. Chem. Soc., Dalton Trans., 2001, 1338.
9 (a) X. Chi, A. J. Guerin, R. A. Haycock, C. A. Hunter and L. D. Sarson,
J. Chem. Soc., Chem. Commun., 1995, 2567; (b) C. A. Hunter and
R. K. Hyde, Angew. Chem., Int. Ed. Engl., 1996, 35, 1936; (c)
F. Wu¨rthner, A. Sautter and C. Thalacker, Angew. Chem., Int. Ed.,
2000, 39, 1243; (d) G. Ercolani, M. Ioele and D. Monti, New J. Chem.,
2001, 25, 783; (e) T. S. Balaban, R. Goddard, M. Linke-Schaetzel and
J.-M. Lehn, J. Am. Chem. Soc., 2003, 125, 4233; (f) C.-C. You and
F. Wu¨rthner, Org. Lett., 2004, 6, 2401; (g) P. Ballester, A. Costa,
P. M. Deya, A. Frontera, R. M. Gomila, A. I. Oliva, J. K. M. Sanders
and C. A. Hunter, J. Org. Chem., 2005, 70, 6616; (h) A. Satake and
Y. Kobuke, Tetrahedron, 2005, 61, 13; (i) Y. Kobuke, Eur. J. Inorg.
Chem., 2006, 12, 2333.
We are indebted to the Deutsche Forschungsgemeinschaft and
the Fonds der Chemischen Industrie for financial support.
Moreover, we would like to thank Dr Paululat (Siegen) for
support with the DOSY NMR measurements.
Notes and references
{ 1H NMR experiments were carried out on 2 mM solutions of the
samples. With the binding constants being in the order of 1020 it is expected
that the concentration range makes it possible to maintain a 99% yield of
the supramolecular squares.9h
§ Diffusion experiments were performed on the Bruker Avance 400 MHz
NMR spectrometer, with a 5 mm BBI probe head, equipped with a pulsed
field gradient unit capable of producing magnetic field gradients in the
z-direction of about 5.35 G cm21. All experiments were carried out at 298 K
in a 5 mm NMR tube at 2 mM concentration. The bipolar magnetic field
pulse gradients (d) were of 2.5–4.5 ms duration, and the diffusion time (D)
was 50 ms. The pulse gradients were incremented from 0.10 to 5.08 G cm21
in 32 steps. Signals were averaged over 30–45 scans. In each experiment the
peaks were analyzed using an inbuilt intensity fit function ‘‘simfit’’ which
utilizes the formula
10 (a) A. Tsuda, T. Nakamura, S. Sakamoto, K. Yamaguchi and A. Osuka,
Angew. Chem., Int. Ed., 2002, 41, 2817; (b) E. Iengo, E. Zangrando,
S. Geremia, R. Graff, B. Kieffer and E. Alessio, Chem.–Eur. J., 2002, 8,
4670.
11 (a) W. S. Price, Concepts Magn. Reson., 1997, 9, 299; (b) W. S. Price,
Concepts Magn. Reson., 1998, 10, 197; (c) For a recent review on the use
of DOSY experiments in supramolecular chemistry, see: Y. Cohen,
L. Avram and L. Frish, Angew. Chem., Int. Ed., 2005, 44, 520.
12 M. S. Kaucher, Y.-F. Lam, S. Pieraccini, G. Gottarelli and J. T. Davis,
Chem.–Eur. J., 2005, 11, 164.
I = I0 exp[D(2c2 G2 d2)(D 2 d/3)]
where c is the gyromagnetic radius (rad s21 G21), d = length of the
diffusion gradients (G cm21) and D = time of separation between the
gradients, G is the pulsed gradient strength and D = diffusion coefficient.
3692 | Chem. Commun., 2006, 3690–3692
This journal is ß The Royal Society of Chemistry 2006