S.R. Jetti et al. / Chinese Chemical Letters 25 (2014) 469–473
471
Ar–H), 7.61 (s, 1H, NH), 9.11 (s, 1H, NH); 13C NMR (DMSO-d6):
14.17, 18.60, 55.70, 60.20, 101.52, 126.312, 127.92, 128.42, 130.29,
135.51, 142.21, 153.23, 159.32, 165.75; IR (KBr, cmÀ1):
max 3234,
1724, 1631; ESI-MS 295 (M + H); HRMS calcd. for C14H15ClN2O3:
294.0771, found: 294.0772.
d
nmax 3240, 1720, 1640, 1595, 1530; ESI-MS 277 (M+H); HRMS
calcd. for C14H16N2O2S: 276.0932 found: 276.0932.
5-(Ethoxycarbonyl)-4-(4-methoxyphenyl)-6-methyl-3,4-dihy-
dropyrimidin-2(1H)-thione (4k): 1H NMR (DMSO-d6):
d 1.17 (t,
3H, J = 7.11 Hz, OCH2CH3), 2.37 (s, 3H, CH3), 4.12 (s, 3H, –OCH3),
4.15 (q, 2H, J = 7.10 Hz, OCH2CH3), 5.44 (d, 1H, J = 2.15 Hz, –CH),
7.11 (d, 2H, J = 8.15 Hz, Ar–H), 7.37 (d, 2H, J = 8.11 Hz, Ar–H), 7.84
n
5-(Ethoxycarbonyl)-4-(4-chlorophenyl)-6-methyl-3,4-dihy-
dropyrimidin-2(1H)-one (4d): 1H NMR (DMSO-d6):
d 1.12 (t, 3H,
J = 7.14 Hz, OCH2CH3), 2.30 (s, 3H, CH3), 3.91 (q, 2H, J = 7.16 Hz,
OCH2CH3), 5.70 (d, 1H, J = 2.28, –CH), 7.21 (d, 2H, J = 9.18, Ar–H),
(s, 1H, NH), 9.43 (s, 1H, NH); 13C NMR (DMSO-d6):
d
14.32, 18.05,
55.24, 55.49, 60.45, 101.84, 114.32, 127.74, 137.25, 147.15, 159.45,
165.62, 182.48; IR (KBr, cmÀ1):
max 3240, 1725, 1635, 1574, 1540;
7.69 (s, 1H, NH), 7.94 (d, 2H, J = 9.18, Ar–H), 9.16 (s, 1H, NH); 13
C
n
NMR (DMSO-d6)
d
: 14.18, 18.62, 55.72, 60.21, 101.55, 118.17,
ESI-MS 307 (M+H); HRMS calcd. for C15H18N2O3S: 306.1038,
found: 306.1040.
130.32, 142.29, 152.31, 153.39, 159.17, 165.83; IR (KBr, cmÀ1):
nmax 3225, 1720, 1615; ESI-MS 295 (M+H); HRMS calcd. for
5-(Ethoxycarbonyl)-4-(3-nitrophenyl)-6-methyl-3,4-dihydro-
pyrimidin-2(1H)-thione (4l): 1H NMR (DMSO-d6):
d 1.15 (t, 3H,
C
14H15ClN2O3: 294.0771, found:294.0773.
5-(Ethoxycarbonyl)-4-(3-bromophenyl)-6-methyl-3, 4-dihy-
J = 7.14 Hz, OCH2CH3), 2.27 (s, 3H, CH3), 4.02 (q, 2H, J = 7.11 Hz,
OCH2CH3), 5.81 (d, 1H, J = 2.06 Hz, –CH), 7.23–7.37 (m, 4H, Ar–H),
dropyrimidin-2(1H)-one (4e): 1H NMR (DMSO-d6):
d 1.02 (t, 3H,
J = 7.05 Hz, OCH2CH3), 2.30 (s, 3H, CH3), 3.75 (q, 2H, J = 7.05 Hz,
OCH2CH3), 5.41 (d, 1H, J = 2.25 Hz, –CH), 7.05–7.34 (m, 4H, Ar–H),
7.78 (s, 1H, NH), 9.34 (s, 1H, NH); 13C NMR (DMSO-d6):
d 14.14,
18.60, 55.64, 60.21, 101.34, 126.25, 128.02, 129.32, 130.75,
135.65, 144.34, 160.40, 165.64, 182.65; IR (KBr, cmÀ1): nmax
3245, 1725, 1632, 1575, 1545; ESI-MS 322 (M+H); HRMS calcd. for
7.51 (s, 1H, NH), 9.05 (s, 1H, NH); 13C NMR (DMSO-d6):
d 14.16,
18.59, 55.74, 60.18, 101.57, 126.35, 127.82, 128.48, 130.32, 135.59,
143.94, 153.21, 159.30, 165.74; IR (KBr, cmÀ1): nmax 3212, 1731,
1620; ESI-MS 339 (M+H); HRMS calcd. for C14H15BrN2O3:
338.0266, found: 338.0268.
5-(Ethoxycarbonyl)-4-(4-methoxyphenyl)-6-methyl-3,4-dihy-
dropyrimidin-2(1H)-one (4f): 1H NMR (DMSO-d6)
d: 1.15 (t, 3H,
C
14H15N3O4S: 321.0783, found: 321.0781.
3. Results and discussion
In the FT-IR spectrum of catalyst (2), the major peaks for silica
(SiO2) are broad non-symmetric Si–O–Si stretching from
1300 cmÀ1 to 1010.6 cmÀ1 and symmetric Si–O–Si stretching near
880–852.5 cmÀ1. For sulfuric acid functional group, the FT-IR
absorption range of the O–S–O asymmetric and symmetric
stretching modes lie in 1170 and 1060 cmÀ1, respectively. FT-IR
spectrum shows the overlap asymmetric and symmetric stretching
bands of SO2 with Si–O–Si stretching bands in the silica
functionalized alkyl-sulfuric acid. The spectrum also shows a
J = 7.12 Hz, OCH2CH3), 2.33 (s, 3H, CH3), 3.78 (s, 3H, –OCH3), 4.06
(q, 2H, J = 7.12 Hz, OCH2CH3), 5.34 (d, 1H, J = 2.28 –CH), 6.82 (d, 2H,
J = 8.60, Ar–H), 7.22 (d, 2H, J = 8.60, Ar–H), 7.76 (s, 1H, NH), 9.26 (s,
1H, NH); 13C NMR (DMSO-d6)
d:14.32, 18.80, 55.23, 55.40, 60.17,
101.68, 114.06, 127.97, 136.22, 146.16, 153.59, 159.30, 165.87; IR
(KBr, cmÀ1): nmax 3232, 1720, 1638; ESI-MS 291 (M+H); HRMS
calcd. for C15H18N2O4: 290.1267, found: 290.1265.
5-(Ethoxycarbonyl)-4-(2,4-dichlorophenyl)-6-methyl-3,4-
dihydropyrimidin-2(1H)-one (4 g): 1H NMR (DMSO-d6):
d 1.18
broad OH stretching absorption around 3600–2520 cmÀ1
.
(t, 3H, J = 7.23 Hz, OCH2CH3), 2.64 (s, 3H, CH3), 4.07 (q, 2H,
J = 7.24 Hz, OCH2CH3), 5.92 (d, 1H, J = 2.30 Hz, –CH), 7.21–7.51 (m,
The BET surface area and total pore volume of Silica-bonded N-
propylsulfamic acid (2) were found to be 2.91 m2 gÀ1 and
0.456 cm3 gÀ1, respectively.
In order to optimize the reaction conditions, the synthesis of
compound 4f was used as a model reaction. Therefore, a mixture of
3H, Ar–H), 7.69 (s, 1H, NH), 9.16 (s, 1H, NH); 13C NMR (DMSO-d6):
d
14.20, 18.60, 55.75, 60.24, 101.56, 127.82, 128.91, 129.52, 131.29,
142.52, 143.25, 153.23, 159.32, 165.75; IR (KBr, cmÀ1):
max 3255,
n
1731, 1651; ESI-MS 329 (M+H); HRMS calcd. for C14H14Cl2N2O3:
328.0381, found: 328.0379.
ethyl
acetoacetate
(2.5 mmol),
4-methoxybenzaldehyde
(2.5 mmol), and urea (2.5 mmol) with different amounts of
SBNPSA (Table 1) was selected. The efficiency of the reaction is
mainly affected by the amount of the catalyst. No product could be
detected in the absence of this catalyst even after 12 h (entry 1),
while good results were obtained in the presence of SBNPSA. The
optimal amount of the catalyst was 0.2 g (entry 5), whereas a
higher amount of the catalyst did not increase the yield noticeably
(entry 6).
5-(Ethoxycarbonyl)-4-(3-nitrophenyl)-6-methyl-3,4-dihydro-
pyrimidin-2(1H)-one (4 h): 1H NMR (DMSO-d6):
d 1.12 (t,
3H, J = 7.10 Hz, OCH2CH3), 2.25 (s, 3H, CH3), 3.65 (q, 2H,
J = 7.14 Hz, OCH2CH3), 5.71 (d, 1H, J = 2.20 Hz, –CH), 7.21–7.54
(m, 4H, Ar–H), 7.74 (s, 1H, NH), 9.26 (s, 1H, NH); 13C NMR (DMSO-
d6):
d 14.16, 18.59, 55.74, 60.18, 101.57, 126.25, 127.45, 128.74,
130.56, 135.46, 144.81, 153.64, 159.45, 165.30; IR (KBr, cmÀ1):
nmax 3229, 1724, 1630; ESI-MS 306 (M+H); HRMS calcd. for
14H15N3O5: 305.1012, found: 305.1013.
As can be seen from (Table 2) compared to the classical Biginelli
method, one additional important feature of the present protocol is
the ability to tolerate variations in all three components
C
5-(Ethoxycarbonyl)-4-(4-flurophenyl)-6-methyl-3,4-dihydro-
pyrimidin-2(1H)-one (4i): 1H NMR (DMSO-d6):
d 1.15 (t, 3H,
J = 7.16 Hz, OCH2CH3), 2.41 (s, 3H, CH3), 4.12 (q, 2H, J = 7.17 Hz,
OCH2CH3), 5.88 (d, 1H, J = 2.25 Hz, –CH), 7.69 (s, 1H, NH), 7.81
(d, 2H, J = 8.5 Hz, Ar–H), 7.94 (d, 2H, J = 9.18 Hz, Ar–H), 9.16 (s, 1H,
Table 1
Influence of the amount of SBNPSA on the synthesis of 4f at reflux temperature.a
NH); 13C NMR (DMSO-d6):
d
14.18, 18.62, 55.72, 60.21, 101.55,
121.19, 132.42, 144.20, 153.39, 157.25, 159.17, 165.83; IR (KBr,
cmÀ1):
max 3250, 1741, 1654; ESIMS 279 (M+H); HRMS calcd. for
14H15FN2O3: 278.1067, found: 278.1069.
5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimi-
din-2(1H)-thione (4j): 1H NMR (DMSO-d6):
1.11 (t, 3H,
Entry
Catalyst
Amount of catalyst (g)
Time (h)
Yield (%)b
n
1
2
3
4
5
6
None
–
12
10
8
<10
57
C
SBNPSA
SBNPSA
SBNPSA
SBNPSA
SBNPSA
0.050
0.1
71
0.150
0.2
6
83
d
4
94
J = 7.21 Hz, OCH2CH3), 2.29 (s, 3H, CH3), 4.12 (q, 2H,
J = 7.24 Hz, OCH2), 5.16 (d, 1H, J = 2.05 Hz, –CH), 7.51 (m, 5H,
0.250
4
95
a
The reaction conditions: ethyl acetoacetate 1 (2.5 mmol), 4-methoxybenzal-
dehyde 2 (2.5 mmol) and urea 3 (2.5 mmol) in ethanol (15 mL) under reflux
temperature.
Ar–H), 7.81 (s, 1H, NH), 9.41 (s, 1H, NH); 13C NMR (DMSO-d6):
d
14.23, 17.91, 54.85, 60.15, 100.90, 112.84, 115.12, 125.15,
126.85, 129.64, 131.45, 150.27, 162.63, 180.25; IR (KBr, cmÀ1):
b
Isolated yields.