Liu et al.
CHART 1
SCHEME 1. Synthesis of 4-HOPPN
tion of superoxide radical (the half-life times of the adducts: 6
and 7 min, respectively).5d,8 Therefore, it is of significant impor-
tance to investigate the exact reason the â-phosphorylated spin
traps can enhance the efficiency of spin trapping of superoxide
radical, since this knowledge can open up the possibilities of
developing more efficient spin traps for superoxide radical.
In a previous study,9 we reported the first X-ray structure of
the phosphorylated cyclic nitrone, 5-diethoxyphosphoryl-5-
phenethyl-1-pyrroline N-oxide (DEPPEPO). Thereafter, the
X-ray structures of other cyclic nitrones such as 5-diisopropy-
loxyphosphoryl-5-methyl-1-pyrroline N-oxide (DIPPMPO),10
5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO),11 and 5-
butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO)12 were
also experimentally determined. Using these X-ray structural
coordinates as the initial input data to program, a series of theo-
retical calculations11-13 have recently been performed to reason-
ably interpret the spin trapping properties of the cyclic nitrones
containing various substituents. The theoretical calculation has
shown potential for designing better cyclic spin traps,12 but little
theoretical attention has been paid to the â-phosphorylated linear
nitrones.
Herein, in the light of spin-trapping ESR behaviors and X-ray
structural coordination of a new phosphorylated linear nitrone,
[N-(4-hydroxybenzyliene)-1-diethoxyphosphoryl-1-methylethyl-
amine N-oxide (4-HOPPN), and those from PBN, two possible
routes for spin trapping of superoxide radical by 4-HOPPN and
PBN as well as three proper mechanisms for explaining the
decay of their superoxide spin adducts have been comparatively
investigated from the theoretical views. In addition, spin trapping
of various reactive radicals by 4-HOPPN was experimentally
evaluated.
half-life time of DMPO-OOH was under a minute at room
temperature,1 while that of PBN-OOH was even shorter.2
Considering that superoxide radical is a primary upstream
radical of the radical reaction chain inducing oxidative stress3
and is involved in a number of signal transduction pathways,4
many efforts have been devoted to developing new spin traps
for superoxide radical and structurally diverse nitrones have been
synthesized.5 Among them, 5-diethoxyphosphoryl-5-methyl-1-
pyrroline N-oxide (DEPMPO), one â-phosphorylated cyclic
nitrone, appears to be one of the most promising spin traps for
superoxide radical and other reactive oxygen species (ROS)
because of the considerably increased stability of its superoxide
spin adduct (DEPMPO-OOH, half-life time t1/2 ∼ 14 min).5a,6
Because of this, DEPMPO has been widely used in a variety
of biological systems.7 Moreover, for the purpose of obtaining
the lipophilic spin trap for ROS, the phosphoryl group was also
introduced into the â position of PBN to create a linear nitrone,
such as 4-PyOPN or PPN (Chart 1).5d,8 The experimental results
showed that these traps possess better properties of spin trapping
superoxide radical as compared with their nonphosphorylated
analogues. For example, relative to PBN, the phosphorylated
linear nitrones N-benzyliene-1-diethoxyphosphoryl-1-methyl-
ethylamine N-oxide (PPN) and 1-diethoxyphosphoryl-1-methyl-
N-[(1-oxidopyridin-1-ium-4-yl)methylidene] ethylamine N-oxide
(4-PyOPN) exhibited considerable improvements in the detec-
Results and Discussion
Experimental Analysis. Synthesis. As shown in Scheme 1,
condensation of 4-hydroxybenzaldehyde on diethyl (1-hydroxy-
amino-1-methylethyl) phosphonate14 led to 4-HOPPN, and then
the product was recrystallized in a mixture of n-hexane and ethyl
acetate after purification by column chromatography.
(1) Buettner, G. R.; Oberley, L. W. Biochim. Biophys. Res. Commun.
1978, 83, 69.
(2) Thomas, C. E.; Ohlweiler, D. F.; Carr, A. A.; Nieduzak, T. R.; Hay,
D. A.; Adams, G.; Vaz, R.; Bernotas, R. C. J. Biol. Chem. 1996, 271, 3097.
(3) (a) Halliwell, B. Am. J. Med. 1991, 91 (3C), 14S. (b) Halliwell, B.;
Gutteridge, J. M. C. Am. J. Med. 1984, 219, 1. (c) Halliwell, B.; Chirico,
S.; Am. J. Clin. Nutr. 1993, 57 (S), 715S.
(4) (a) Finkel, T. J. Leukocyte Biol. 1999, 65, 337. (b) Wolin, M. S.
Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1430. (c) Droge, W. Physiol.
ReV. 2002, 82, 47.
(5) (a) Fre´javille, C.; Karoui, H.; Tuccio, B.; Le Moigne, F.; Culcasi,
M.; Pietri, S.; Lauricella, R.; Tordo, P. J. Chem. Soc., Chem. Commun.
1994, 1793. (b) Olive, G.; Mercier, A.; Le Moigne, F.; Rockenbauer, A.;
Tordo, P. Free Radic. Biol. Med. 2000, 8, 403. (c) Zhao, H.; Joseph, J.;
Karoui, H.; Kalyanaraman, B. Free Radic. Biol. Med. 2001, 31, 599. (d)
Zeghdaoui, A.; Tuccio, B.; Finet, J. P.; Cerri, V.; Tordo, P. J. Chem. Soc.,
Perkin Trans. 2 1995, 2087.
X-ray Structure. It is valuable to explore the X-ray structure
of 4-HOPPN since this experimental data can provide substantial
(9) Xu, Y. K.; Chen, Z. W.; Sun, J.; Liu, K.; Chen, W.; Shi, W.; Wang,
H. M.; Liu, Y. J. Org. Chem. 2002, 67, 7624.
(10) Chalier, F.; Tordo, P. J. Chem. Soc., Perkin Trans. 2 2002, 2110.
(11) Villamena, F. A.; Rockenbauer, A.; Gallucci, J.; Velayutham, M.;
Hadad, C. M.; Zweier, J. L. J. Org. Chem. 2004, 69, 7994.
(12) Villamena, F. A.; Hadad, C. M.; Zweier, J. L. J. Phys. Chem. A
2003, 107, 4407.
(6) Fre´javille, C.; Karoui, H.; Tuccio, B.; Le Moigne, F.; Culcasi, M.;
Pietri, S.; Lauricella, R.; Tordo, P. J. Med. Chem. 1995, 38, 258.
(7) (a) Shi, H.; Timmins, G.; Monske, M.; Burdick, A.; Kalyanaraman,
B.; Liu, Y.; Cle´ment, J. L.; Burchiel, S.; Liu, K. J. Arch. Biochem. Biophys.
2005, 437, 59. (b) Liu, K.; Sun, J.; Song, Y. G.; Liu, B.; Xu, Y. K.; Zhang,
S. X.; Tian, Q.; Liu, Y. Photosyn. Res. 2004, 81, 41. (c) Vasquez-Vivar, J.;
Kalyanaraman, B.; Martasek, P.; Hogg, N.; Masters, B. S. S.; Karoui, H.;
Tordo, P.; Pritchard, K. A. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 9220.
(8) (a) Tuccio, B.; Zeghdaoui, A.; Finet, J. P.; Cerri, V.; Tordo, P. Res.
Chem. Intermed. 1996, 22, 393. (b) Roubaud, V.; Lauricella, R.; Tuccio,
B.; Bouteiller, J. C.; Tordo, P. Res. Chem. Intermed. 1996, 22, 405.
(13) (a) Villamena, F. A.; Hadad, C. M.; Zweier, J. L. J. Am. Chem.
Soc. 2004, 126, 1816. (b) Rosen, G. M.; Beselman, A.; Tsai, P.; Pou, S.;
Mailer, C.; Ichikama, K.; Robinson, B. H.; Nielsen, R.; Halpern, H. J.;
Mackerell, A. D. J. Org. Chem. 2004, 69, 1321. (c) Cle´ment, J. L.; Ferre´,
N.; Siri, D.; Karoui, H.; Rockenbauer, A.; Tordo, P. J. Org. Chem. 2004,
69, 1198. (d) Villamena, F. A.; Hadad, C. M.; Zweier, J. L. J. Phys. Chem.
A 2005, 109, 1662. (e) Villamena, F. A.; Merle, J. K.; Hadad, C. M.; Zweier,
J. L. J. Phys. Chem. A 2005, 109, 6083. (f) Villamena, F. A.; Merle, J. K.;
Hadad, C. M.; Zweier, J. L. J. Phys. Chem. A 2005, 109, 6089.
(14) Petrov, K. A.; Chauzov, V. A.; Pastukhova, L. V.; Bogdanov, N.
N. Zh. Obshch. Khim. 1976, 46, 1246.
7754 J. Org. Chem., Vol. 71, No. 20, 2006