Angewandte
Chemie
À3
Table 2: Rhodium-catalyzed hydroformylation of styrene using diphosphites 3 and 4.[a]
0.248,
Sw = 0.938,
D1 < 2.9 e .
CCDC 297616 contains the supplemen-
tary crystallographic data for this paper.
These data can be obtained free of
charge from The Cambridge Crystallo-
ac.uk/data_request/cif.
Entry
Ligand
p(CO/H2) [bar]
t [h]
Conversion [%][b] TOF[c]
Branched [%]
Linear [%]
1
2
3
3
20
10
5
5
24
4.5
5.5
24
18.3
21.7
58.7
19.1
21.4
64.4
180
220
120
210
200
134
41.2
34.8
32.6
26.4
23.9
23.4
58.8
65.2
67.4
73.6
76.1
76.6
3
4
4
4
20
10
Received: May 18, 2006
Published online: August 3, 2006
[a] Reaction conditions: styrene (10 mmol), styrene/Rh=5000, L/Rh=10, CO/H2 (1/1) initial pressure
(at80 8C), T=808C, toluene/n-decane (15 mL/0.5 mL), incubation overnight. [b] Determined by GC,
calibration based on decane. [c] mol(converted styrene) per mol(Rh) and h.
Keywords: allylic alkylation ·
.
calixarenes · diphosphites ·
hydroformylation · regioselectivity
protection about the metal center plays a key role for the
catalytic outcome. This is also in keeping with the observation
[1] B. Kersting, Z. Anorg. Allg. Chem. 2004, 630, 765.
that the selectivity obtained with 4 is somewhat better than
that reported for the Xantphites, which have similar large bite
angles, but which are deprived of any side group able to exert
an additional steric pressure on the first coordination sphere
of the metal.[25]
[2] C. Jeunesse, D. Armspach, D. Matt, Chem. Commun. 2005, 5603.
[3] T. S. Koblenz, H. L. Dekker, C. G. de Koster, P. W. N. M. van
Leeuwen, J. N. H. Reek, Chem. Commun. 2006, 1700.
[4] M. T. Reetz, S. R. Waldvogel, Angew. Chem. 1997, 109, 870;
Angew. Chem. Int. Ed. Engl. 1997, 36, 865.
[5] R. Paciello, L. Siggel, M. Röper, Angew. Chem. 1999, 111, 2045;
Angew. Chem. Int. Ed. 1999, 38, 1920.
[6] V. F. Slagt, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeu-
wen, Angew. Chem. 2001, 113, 4401; Angew. Chem. Int. Ed. 2001,
40, 4271.
[7] D. Armspach, D. Matt, F. Peruch, P. Lutz, Eur. J. Inorg. Chem.
2003, 805.
[8] S. Steyer, C. Jeunesse, J. Harrowfield, D. Matt, Dalton Trans.
2005, 1301.
[9] Calixarenes 2001 (Eds.: Z. Asfari, V. Böhmer, J. M. Harrowfield,
J. Vicens), Kluwer Academic Publishers, Dordrecht, 2001.
[10] P. Kuhn, C. Jeunesse, D. SØmeril, D. Matt, P. Lutz, R. Welter, Eur.
J. Inorg. Chem. 2004, 4602.
[11] C. Kunze, D. Selent, I. Neda, M. Freytag, P. G. Jones, R.
Schmutzler, W. Baumann, A. Börner, Z. Anorg. Allg. Chem.
2002, 628, 779.
Overall, calixarenes 3 and 4 provide unprecedented
examples of hemispherical chelators able to drive allylic
alkylation as well as olefin hydroformylation reactions
towards the formation of “linear” products. With these
ligands, the metal embrace is particularly effective, the large
bite angles being associated with a conformation of the
calixarene which produces a steric protection by the O-alkyl
substituents of the apical positions on the metal, already
encumbered by the substituents on the bound P atoms. These
steric effects are cooperative consequences of the known fact
that flattening of the orientation of two opposed phenyl rings
of a calix[4]arene to the mean macrocyclic plane results in a
steeper orientation of the other pair.
[12] R. PrØtôt, A. Pfaltz, Angew. Chem. 1998, 110, 337; Angew. Chem.
Int. Ed. 1998, 37, 323.
Experimental Section
[13] S.-L. You, X.-Z. Zhu, Y.-M. Luo, X.-L. Hou, L.-X. Dai, J. Am.
Chem. Soc. 2001, 123, 7471.
[14] D. Laurenti, M. Feuerstein, G. Ppe, H. Doucet, M. Santelli, J.
Org. Chem. 2001, 66, 1633.
[15] M. DiØguez, O. Pàmies, C. Claver, J. Org. Chem. 2005, 70, 3363.
[16] M. DiØguez, O. Pàmies, C. Claver, Adv. Synth. Catal. 2005, 347,
1257.
[17] M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, Eur. J.
Inorg. Chem. 1998, 25; Xantphos: 9,9-dimethyl-4,5-bis(diphe-
nylphosphanyl)xanthene.
[18] C. P. Casey, G. T. Whiteker, M. G. Melville, L. M. Petrovich,
J. A. Gavney, Jr., D. R. Powell, J. Am. Chem. Soc. 1992, 114,
5535.
[19] L. A. van der Veen, P. H. Keeven, G. C. Schoemaker, J. N. H.
Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, M. Lutz, A. L.
Spek, Organometallics 2000, 19, 872.
[20] P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P.
Dierkes, Chem. Rev. 2000, 100, 2741.
[21] W. Ahlers, M. Röper, P. Hofmann, D. C. M. Warth, R. Paciello,
WO 01/58589 (BASF), 2001.
Full experimental details for all products are given in the Supporting
Information.
3: 1H NMR (300 MHz, C6D6): d = 7.69–7.27 (15H, CHarom), 7.18–
6.98 (10H, CHarom), 6.95–6.75 (7H, CHarom), 5.10 and 3.52 (AB sys-
tem, 4H, ArCH2Ar, 2J = 13.0 Hz), 5.00 and 3.00 (AB system, 4H,
ArCH2Ar, 2J = 13.0 Hz), 4.00–3.79 (m, 4H, OCH2), 2.06–1.85 (m, 4H,
CH2CH3), 1.26 (s, 18H, C(CH3)3), 1.23 (s, 18H, C(CH3)3), 0.39 ppm (t,
6H, CH2CH3, 3J = 7.4 Hz). 13C{1H} NMR (75 MHz, C6D6): d =
154.10–121.98 (Carom), 77.34 (s, OCH2), 33.81 (s, C(CH3)3), 33.79 (s,
C(CH3)3), 33.30 (s, ArCH2Ar), 31.96 (s, ArCH2Ar), 31.43 (s, C-
(CH3)3), 31.40 (s, C(CH3)3), 22.96 (s, CH2CH3), 9.44 ppm (s, CH2CH3).
31P{1H} NMR (121 MHz, C6D6): d = 133.76 ppm (s, OP(OAr)2).
Crystal structure of 5·6CH2Cl2: Mr = 2163.56, monoclinic, P21,
a = 13.4071(7), b = 23.4689(8), c = 17.0844(8) , b = 102.469(4)8, V=
5248.8(4) 3, Z = 2, Dx = 1.369 mgmÀ3, l(MoKa) = 0.71073 , m =
5.91 cmÀ1, F(000) = 2228, T= 100(1) K. Data were collected on an
Oxford Diffraction Xcalibur Saphir 3 diffractometer (graphite MoKa
radiation, l = 0.71073 ). The structure was solved with SIR-97[27]
which revealed the non-hydrogen atoms of the molecule. After
anisotropic refinement, many hydrogen atoms were found with a
Fourier difference analysis. The whole structure was refined with
SHELX-97[28] and full-matrix least-square techniques (use of F2; x, y,
z, bij for Pd, P, F, Cl, C and O atoms, x, y, z in riding mode for H atoms;
1163 variables and 11795 observations with I > 2.0 s(I); calc w = 1/
[s2(Fo2) + (0.18P)2 + 28.7P] where P = (Fo2 + 2Fc2)/3. R = 0.088, Rw =
[22] J. R. Briggs, G. T. Whiteker, Chem. Commun. 2001, 2174.
[23] R. P. J. Bronger, P. C. J. Kamer, P. W. N. M. van Leeuwen, Orga-
nometallics 2003, 22, 5358.
[24] L. A. van der Veen, P. C. J. Kamer, P. W. N. M. van Leeuwen,
Angew. Chem. 1999, 111, 349; Angew. Chem. Int. Ed. 1999, 38,
336.
Angew. Chem. Int. Ed. 2006, 45, 5810 –5814ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5813