and also phenyl moieties with different electronic properties
(Table 1, entries 2-4).
Various dibromovinylanilines substituted on the phenyl
ring were also evaluated with tert-butyl acrylate (Table 3,
The effect of substitution on the aniline nitrogen of the
gem-dibromovinylaniline has also been studied using tert-
butyl acrylate under the standard reaction conditions (Table
2, entries 1-6). The coupling with both the electron-rich
Table 3. Scope of ortho-gem-Dibromovinylaniline Substrates
Table 2. Scope of ortho-gem-Dibromovinylaniline Substrates
a Isolated yields. b tert-Butyl acrylate (2.0 equiv), Pd(OAc)2 (4 mol %),
Me4NCl (1.0 equiv), K3PO4‚H2O (2.0 equiv), NEt3 (2.0 equiv), reflux,
toluene. c Pd(OAc)2 (4 mol %), P(o-tolyl)3 (8 mol %).
a Isolated yields. b tert-Butyl acrylate (2.0 equiv), Pd(OAc)2 (4 mol %),
Me4NCl (1.0 equiv), K3PO4‚H2O (2.0 equiv), NEt3 (2.0 equiv), reflux,
toluene. c Pd2dba3 (3 mol %), S-Phos (12 mol %). d Pd(OAc)2 (4 mol %),
P(o-tolyl)3 (8 mol %).
entries 1-6). This methodology proved to be a very general
and efficient method to prepare functionalized indoles.
Electronic factors and steric hindrance had little effect on
the yield. A broad spectrum of electron-donating and
electron-withdrawing functionalities in different positions
around the phenyl ring is tolerated. The only limitation of
this reaction is in the formation of 3-substituted indoles, as
yields were poor when attempts were made with the
corresponding substituted dibromovinylanilines.
and the electron-deficient N-aryl substrate and N-benzyl
derivative proceeded smoothly to afford the desired product
in good yields (Table 2, entries 1-3). In addition, N-alkyl-
substituted anilines with different steric hindrance (entries
4 and 5) also reacted efficiently. The use of the unsubstituted
aniline (2h), which allows flexibility, gave the expected
product, but in lower yield (Table 2, entry 6).
(18) Synthesis of 2-vinyl indole via C-H functionalization: (a) Grimster,
N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int.
Ed. 2005, 44, 3125. (b) Capito, E.; Brown, J. M.; Ricci, A. Chem. Commun.
2005, 1854. Via a Stille cross-coupling reaction: (c) Hudkins, R. L.;
Diebold, J. L.; Marsh, F. D. J. Org. Chem. 1995, 60, 6218. (d) Beccalli, E.
M.; Marchesini, A. Tetrahedron 1995, 51, 2353. Via Wittig reaction: (e)
Eitel, M.; Pindur, U. Synthesis 1989, 364. (f) Nagarathnam, D. Synthesis
1992, 743. Via a hetero-Cope rearrangement: (g) Wilkens, J.; Ku¨hling,
A.; Blechert, S. Tetrahedron 1987 43, 3237. (h) Macor, J. E.; Newman, M.
E.; Ryan, K. Tetrahedron Lett. 1989, 30, 2509.
(19) For the preparation of the gem-dibromovinylaniline system, see
Supporting Information and also the Supporting Information of ref 8.
(20) Jeffery, T. Tetrahedron 1996, 52, 10113.
(21) (a) Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2002, 124,
14326. (b) Karig, G.; Moon, M.-T.; Thasana, N.; Gallagher, T. Org. Lett.
2002, 4, 3115. For a review on 1,4-migration on biaryl systems, see: (c)
Ma, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 44, 7512.
(13) For a synthesis of indoles occurring via a tandem Pd-catalyzed Heck
reaction/amination, see: Barluenga, J.; Ferna´ndez, A. M.; Aznar, F.; Valde´s,
C. Chem.-Eur. J. 2005, 11, 2276.
(14) For Heck reaction involving 2-iodo-indole, see: Tokuyama, H.;
Kaburagi, Y.; Chen, X.; Fukuyama, T. Synthesis 2000, 429.
(15) For some recent applications, see: (a) Laronze, M.; Sapi, J.
Tetrahedron Lett. 2002, 43, 7925. (b) Wiest, O.; Steckhan, E. Angew. Chem.,
Int. Ed. 1993, 32, 901. (c) Noland, W. E.; Xia, G. M.; Gee, K. R.; Konkel,
M. J.; Wahlstrom, M. J.; Condoluci, J. J.; Rieger, D. L. Tetrahedron 1996,
52, 4555. (d) Ishikura, M.; Hino, A.; Yaginuma, T.; Agata, I.; Katagiri, N.
Tetrahedron 2000, 56, 193. (e) Padwa, A.; Lynch, S. M.; Mejia-Oneta, J.
M.; Zhang, H. J. Org. Chem. 2005, 70, 2206. (f) Rawat, M.; Wulff, W. D.
Org. Lett. 2004, 6, 329. (g) Grieco, P. A.; Kaufman, M. D. J. Org. Chem.
1999, 64, 7586.
(16) Repic, O.; Prasad, K.; Lee, G. T. Org. Process Res. DeV. 2001, 5,
519.
(17) Conde, J. J.; McGuire, M.; Wallace, M. Tetrahedron Lett. 2003,
44, 3081.
(22) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2004, 43, 1871.
Org. Lett., Vol. 8, No. 19, 2006
4205