Page 5 of 7
Green Chemistry
Please do not adjust margins
Journal Name
ARTICLE
methyl sulfide, this electrochemical-based synthetic strategy
can avoid the usage of external oxidants and transition metal 8.
catalysts. Various electron-rich aromatics exhibited good
efficiencies for this transformation. On the other hand, it has
been demonstrated that the cross-coupling of aryl-thiocyanate 9.
and methanol strategies can also efficiently synthesize
sulfides. Importantly, these reactions can be performed on a
P. J. Med. Chem. 1990, 33, 2231.
DOI: 10.1039/D0GC00591F
De Keijzer, J.; Mulder, A.; De Haas, P. E. W.; De Ru, A. H.;
Heerkens, E. M.; Amaral, L.; Van Soolingen, D.; Van Veelen,
P. A. J. Proteome Res. 2016, 15, 1776.
Giannetti, A. M.; Wong, H.; Dijkgraaf, G. J. P.; Dueber, E. C.;
Ortwine, D. F.; Bravo, B. J.; Gould, S. E.; Plise, E. G.; Lum, B.
L.; Malhi, V.; Graham, R. A. J. Med. Chem. 2011, 54, 2592.
gram scale with good reaction efficiency, and the sole necessary 10. Shiff, S. J.; Qiao, L.; Tsai, L. L.; Rigas, B. J. Clin. Invest. 1995,
reagent in C-H methylthiolation is readily available thiocyanated 96, 491.
salts. These advantages encourage us to have prospect towards 11. Lin, D. Y.; Zhang, S. -Z.; Block, E.; Katz, L. C. Nature. 2005,
industrialization. Further studies on using electrochemical 434, 470.
oxidation and reduction to synthesize other sulfur-containing 12. Sauer, J.; Boeck,W.; VonHippel,L.; Burkhardt,W.; Rautenberg,
bioactive compounds are currently underway in our laboratory.
S.; Arntz, D.; Hofen, W. U.S. Patent 5, 852, 219, Dec. 22, 1998.
13. (a) Yamauchi, K.; Tanabe, T.; Kinoshita, M. J. Org. Chem. 1979,
44, 638. (b) Liu, C.; Szostak, M. Chem. Commun. 2018, 54,
2130.
Conflicts of interest
14. (a) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y.
Angew. Chem., Int. Ed. 2009, 48, 4222. (b) Ma, D.; Geng, Q.;
Zhang, H.; Jiang, Y. Angew. Chem., Int. Ed. 2010, 49, 1291.
15. (a). Luo, F.; Pan, C.; Li, L.; Chen, F.; Cheng, J. Chem. Commun.
2011, 47, 5304. (b). Sharm P.; Rohilla, S.; Jain, N. J. Org. Chem.
2015, 8, 4116. (c). Hu, L.; Chen, X.; Yu, L.; Yu, Y.; Tan, Z.;
Zhu, G.; Gui, Q. Org. Chem. Front. 2018, 5, 216.
There are no conflicts to declare.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (Grant 21908241).
16. Wang, M.; Qiao, Z.; Zhao, J.; Jiang, X. Org. Lett. 2018, 20,
6193.
17. (a) Yan, M.; Kawamata, Y.;Baran, P. S. Chem. Rev. 2017, 117,
13230. (b) Yoshida, J.; Shimizu, A.; Hayashi, R. Chem. Rev.
2018, 118, 4702. (c) Rensing, D. T.; Nguyen, B. H.; Moeller, K.
D. Org. Chem. Front. 2016, 3, 1236.
18. (a) Kärkäs, M. Chem. Soc. Rev. 2018, 47, 5786. (b) Marko, J.;
Durgham, A.; Bretz, S. L.; Liu, W. Chem. Commun. 2019, 55,
937. (c) Wu, Y.; Xi, Y.; Zhao, M.; Wang, S. Chin. J. Org. Chem.
2018, 10, 2590. (d) Dou, G. Y.; Jiang, Y. Y.; Xu, K.; Zeng, C.
Chu. Org. Chem. Front. 2019, 6, 2392.
19. (a) Wiebe, A.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel,
S. R. Angew. Chem. Int. Ed. 2017, 56, 14727. (b) Angew. Chem.
2017, 129, 14920-14925. (c) Feng, E.; Hou, Z.; Xu, H.; Chin. J.
Org. Chem. 2019, 5, 1424.
20. (a) Ma, C.; Fang, P.; Mei, T. S. ACS Catal. 2018, 8, 7179. (b)
Yang, Q. L.; Fang, P.; Mei, T. S. Chin. J. Chem. 2018, 36, 338.
(c) Gao, X.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am.
Chem. Soc. 2018, 12, 4195.
21. (a) Zhang, L. B.; Geng, R. S.; Wang, Z. C.; Ren, G. Y.; Wen, L.
R.; Li, M. Green Chem. 2020, 22, 16. (b) Xiong, P.; Xu, H. H.
Xu, H. C. J. Am. Chem. Soc. 2017, 139, 2956. (c) Hayrapetyan,
D.; Shkepu, V.; Seilkhanov, O. T.; Zhanabil, Z.; Lam, K. Chem.
Commun. 2017, 53, 8451.
22. (a)Wen, J.; Zhang, L.; Yang, X.; Niu, C.; Wang, S.; Wei, W.;
Sun, X.; Yang, J.; Wang, H.; Green Chem. 2019, 21, 3597. (b)
Zhang, X.; Wang, C.; Jiang, H.; Sun, L. RSC Adv. 2018, 8,
22042. (c) Borpatra, P. J. Deka, B.;Deb, M. L. Baruah, P. K.
Org. Chem. Front. 2019, 6, 3445.
Notes and references
1.
(a) Sulfur Compounds: Advances in Research and Application;
Acton, Q. A., Ed.; ScholarlyEditions: Atlanta, GA, 2012. (b)
Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med.
Chem. 2016, 16, 1200. (c) Karabanovich, G.; Zemanová, J.;
Smutný, T.; Székely, R.; Šarkan, M.; Centárová, I.; Vocat, A.;
Pávková, I.; Čonka, P.; Němeček, J.; Stolaříková, J.; Vejsová,
M.; Vávrová, K.; Klimešová, V.; Hrabálek, A.; Pávek, P.; Cole,
S. T.; Mikušová, K.; Roh, J. J. Med. Chem. 2016, 59, 2362. (d)
Conroy, S.; Kindon, N.; Kellam, B.; Stocks, M. J. J. Med. Chem.
2016, 59, 9981.
2.
3.
(a) Stiefel,E.I.Transition Metal Sulfur Chemistry: Biological
and Industrial Significance and Key Trends. In Transition Metal
Sulfur Chemistry: Biological and Industrial Significance;
Stiefel, E. I., Matsumoto, K., Eds.; American Chemical Society:
Washington, DC, 1996; Chapter1, pp2-38. (b) Fontecave,M.;
Ollagnier-de-Choudens, S.; Mulliez, E. Chem. Rev. 2003, 103,
2149.
(a) Jacob, C.; Battaglia, E.; Burkholz, T.; Peng, D.; Bagrel, D.;
Montenarh, M. Chem. Res. Toxicol. 2012, 25, 588. (b) Casida,
J. E. J. Agric. Food Chem. 2016, 64, 4471. (c) Casida, J. E.;
Durkin, K. A. Chem. Res. Toxicol. 2017, 30, 94. (d). Hua, X.;
Liu, N.; Fan, Z.; Zong, G.; Ma.; Lei, K.; Y, H.; Wang, G. Chin.
J. Org. Chem. 2019, 9, 2581.
4.
5.
Liu, J.; Yang, J.; Yang, Q.; Wang, G.; Li, Y. Adv. Funct. Mater.
2005, 15, 1297.
Belley, M.; Gauthier, J. Y.; Grimm, E.; LeBlanc, Y.; Li, C.-S.;
Therien, M.; Black, C.; Prasit, P.; Lau, C.-K.; Roy, P. U.S.
Patent No. 5, 981, 576, Nov. 9, 1999.
23. Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed.
2017, 56, 3009.
24. Fotouhi, L.; Nikoofar, K. Tetrahedron Lett. 2013, 54, 2903.
25. (a) Yuan, P. F.; Zhang, Q. B.; Jin, X. L.; Lei, W. L.; Wu, L. Z.,
Liu, Q. Green Chem. 2018, 20, 5464; (b) Bellmo, A.; Gnzalez,
6.
7.
Boldt, J.; Suttner, S. Expert Opin. Pharmacother. 2007, 8, 2135.
Barraclough, P.; Black, J. W.; Cambridge, D.; Collard, D.;
Firmin, D.; Gerskowitch, V. P.; Glen, R. C.; Giles, H.; Hill, A.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins