C O M M U N I C A T I O N S
Scheme 1. Total Synthesis of (+)-Lasubine II
Scheme 2. Proposed Mechanism
formation (pathway B). Subsequent olefin insertion and reductive
elimination provides the lactams.
In summary, we have developed a highly regio- and enantiose-
lective rhodium-catalyzed [2+2+2] cycloaddition involving alkenyl
isocyanates and terminal alkynes, providing efficient access to indo-
and quinolizinone cores.
withdrawing substituted aryl acetylenes also participate readily in
the cycloaddition (up to 94% ee), with the product selectivity
gradually shifting toward increased amount of lactam 3 with
increasing electron-withdrawing ability (entries 10-14).9 The
reaction is not restricted to aryl acetylenes, as the cyclic enyne 1o
also participates to generate exclusively the corresponding Vinylo-
gous amide 4 in high efficiency (entry 15).
Asymmetric syntheses of quinolizinones 6 can also be achieved
in moderate to good yields with excellent enantiocontrol (Scheme
1). The reactions are accompanied by varying amounts of pyridones
7 as side products,10 suggesting that the alkene moiety is the last
2π component incorporated. To demonstrate the synthetic utility
of this methodology, enantioenriched 6b undergoes a diastereose-
lective hydrogenation followed by a Mitsunobu to complete the
total synthesis of (+)-lasubine II11 in only three steps from
isocyanate 5.
In contrast to the Vinylogous amide selectivity observed for most
aryl acetylenes, reactions with alkyl acetylenes provide primarily
lactam products, presumably due to the electronic differences
between the alkyl and aryl groups (Table 3). By employing L4,
cycloadditions with primary alkyl acetylenes proceed smoothly to
afford lactams 3 with excellent product selectivity (up to >20:1),
good enantioselectivity (up to 87% ee), and good isolated yields
(entries 1-6). The more sterically hindered cyclohexyl acetylene
(entry 7) furnishes both types of products in an approximately 1:1
ratio with excellent enantioselectivity for 4v (95% ee), suggesting
that both sterics and electronics play a role in governing product
selectivity.
A proposed mechanism is outlined in Scheme 2. An initial
oxidative cyclization between the isocyanate and alkyne in an
orientation where a C-N bond is formed provides metalacycle A.
A CO migration12,13 to B followed by olefin insertion and reductive
elimination furnishes the Vinylogous amides (pathway A). In a
different orientation, metallacycle D is formed with a C-C bond
Acknowledgment. We thank Susie Miller for X-ray analyses.
We thank Merck, Eli Lilly, Amgen, Johnson and Johnson, and
Boehringer Ingelheim for unrestricted support. T.R. is a fellow of
the Alfred P. Sloan Foundation and thanks the Monfort Family
Foundation for a Monfort Professorship.
Supporting Information Available: Detailed experimental pro-
cedures and compound characterization (PDF, CIF). This material is
References
(1) For recent reviews: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. ReV.
2002, 102, 813. (b) Murakami, M. Angew. Chem., Int. Ed. 2003, 42, 718.
(c) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004, 104, 2127. (d) Gandon,
V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209.
(2) Michael, J. P. Nat. Prod. Rep. 2005, 22, 603.
(3) Hoberg has extensively investigated the metal-mediated coupling of
isocyanates and various π systems: (a) Hoberg, H.; Hernandez, E. Angew.
Chem., Int. Ed. Engl. 1985, 24, 961. (b) Hoberg, H. J. Organomet. Chem.
1988, 358, 507. (c) Hoberg, H.; Ba¨rhausen, D.; Mynott, R.; Schroth, G.
J. Organomet. Chem. 1991, 410, 117.
(4) For [2+2+2] cycloadditions of alkynes and isocyanates catalyzed by
various metals. Co: (a) Earl, R. A.; Vollhardt, K. P. C. J. Org. Chem.
1984, 49, 4786. (b) Hong, P.; Yamazaki, H. Tetrahedron Lett. 1977, 1333.
(c) Bonaga, L. V. R.; Zhang, H.-C.; Moretto, A. F.; Ye, H.; Gauthier, D.
A.; Li, J.; Leo, G. C.; Maryanoff, B. E. J. Am. Chem. Soc. 2005, 127,
3473. Ru: (d) Yamamoto, Y.; Takagishi, H.; Itoh, K. Org. Lett. 2001, 3,
2117. (e) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda,
S.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 605. Ni: (f)
Hoberg, H.; Oster, B. W. Synthesis 1982, 324. (g) Duong, H. A.; Cross,
M. J.; Louie, J. J. Am. Chem. Soc. 2004, 126, 11438. Rh: (h) Tanaka,
K.; Wada, A.; Noguchi, K. Org. Lett. 2005, 7, 4737.
(5) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2782.
(6) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346. (b) Alexakis, A.; Burton,
J.; Vastra, J.; Benhaim, C.; Fournioux, X.; van den Heuvel, A.; Leveque,
J.; Maze, F.; Rosset, S. Eur. J. Org. Chem. 2000, 4011. (c) Panella, L.;
Feringa, B. L.; de Vries, J. G.; Minnaard, A. J. Org. Lett. 2005, 7, 4177.
(d) Woodward, A. R.; Burks, H. E.; Chan, L. M.; Morken, J. P. Org.
Lett. 2005, 7, 5505.
(7) For selected references: (a) Yoshikawa, S.; Kiji, J.; Furukawa, J.
Makromol. Chem. 1977, 178, 1077. (b) Ohshita, J.; Furumori, K.;
Matsuguchi, A.; Ishikawa, M. J. Org. Chem. 1990, 55, 3277. (c) Lee, C.;
Lin, Y.; Liu, Y.; Wang, Y. Organometallics 2005, 24, 136.
Table 3. Scope of the Cycloaddition with Alkyl Acetylenesa
(8) These reaction conditions provide inferior results with internal alkynes.
For example, Rh(I)/L5 provides the vinylogous amide in 28% yield and
9% ee when using diphenylacetylene as the alkyne partner.
(9) This effect may be partially rationalized through Hoffmann’s theoretical
study if one considers orbital coefficients in the LUMO of the alkyne.
See: Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2952.
(10) Pyridone formation from isocyanate 2 is not observed by 1H NMR (<5%).
(11) For recent asymmetric syntheses of lasubine II, see: (a) Davis, F. A.;
Chao, B. Org. Lett. 2000, 2, 2623. (b) Ma, D.; Zhu, W. Org. Lett. 2001,
3, 3927. (c) Back, T. G.; Hamilton, M. D. Org. Lett. 2002, 4, 1779.
(12) (a) Braunstein, P.; Nobel, D. Chem. ReV. 1989, 89, 1927. (b) Barnhart,
R. W.; Bosnich, B. Organometallics 1995, 14, 4343. (c) Tanaka, K.; Fu,
G. C. Chem. Commun. 2002, 684.
(13) Conducting the cycloaddition under 1 atm of CO leads to no reaction.
a-d See Table 1. e ee (%) of 4v. f L3 used as the ligand.
JA064868M
9
J. AM. CHEM. SOC. VOL. 128, NO. 38, 2006 12371