LETTER
Catalytic Addition of Homoenolates to Imines
475
and benzyl-derived (from phenylalanine) ligands. Further and thus preventing further cyclization. In the case of
studies have to be done to gain a reliable mechanistic in- ZnCl2, no silylation is possible, therefore, the formation of
sight into this reaction.
the lactam can be achieved.
After clarifying some chemoselectivity aspects of this
new reaction, problems concerning regioselectivity while
using substituted cyclopropyl hemiacetals have to be ad-
dressed. Future plans also include the utilization of other
chiral, non-racemic Lewis acids to achieve the asymmet-
ric synthesis of non-natural g-amino acids.
O
O
O
O
N
N
N
N
Cu
Cu
Ph
Ph
t-Bu
t-Bu
(OTf)2
(OTf)2
8
7
Acknowledgment
O
O
Me
Me
Me
Me
Financial support by the DFG (We 1826/2-2) and the Fonds der
Chemischen Industrie is highly appreciated.
H
H
N
N
O
O
O
OEt
Ph
Ph
t-Bu
O
t-Bu
OEt
Cu
Cu
N
N
N
N
H
H
PMP
References
PMP
Re face
(tetrahedral)
H
Si face
H
(1) (a) Arend, M.; Westermann, B.; Risch, N. Angew. Chem. Int.
Ed. 1998, 37, 1045; Angew. Chem. 1998, 110, 1097.
(b) Arend, M. Angew. Chem. Int. Ed. 1999, 38, 2873; Angew.
Chem. 1999, 111, 3047. (c) Denmark, S. E.; Nicaise, O. J. C.
In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.;
Pfaltz, A.; Yamamoto, H., Eds.; Springer: Heidelberg, 1999,
923.
(square planar)
Figure 1 Transition states for the Mannich reaction and the homo-
Mannich reaction
To show the potential of this new reaction, we employed
menthone-derived chiral glycine equivalent 9 as the imine
(Scheme 3).10 It can certainly be assumed that the addition
of homoenolate 2 is governed by the chiral, non-racemic
auxiliary, and therefore, leading to products in high dias-
tereoselectivities. Compound 9 can be easily synthesized
by forming the N,N-acetal (menthone and N-methyl glyc-
inamide) first and subsequent oxidation with PDC.
(2) (a) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.
(b) Yamasaki, S.; Iida, T.; Shibasaki, M. Tetrahedron Lett.
1999, 40, 307. (c) Ishitani, H.; Ueno, M.; Kobayashi, S. J.
Am. Chem. Soc. 2000, 122, 8180. (d) List, B. J. Am. Chem.
Soc. 2000, 122, 9336. (e) Juhl, K.; Gathergood, N.;
Jørgensen, K. A. Angew. Chem. Int. Ed. 2001, 40, 2995;
Angew. Chem. 2001, 113, 3083;. (f) Notz, W.; Sakthivel,
K.; Bui, T.; Zhong, G. F.; Barbas, C. F. Tetrahedron Lett.
2001, 42, 199. (g) List, B.; Pojarliev, P.; Biller, W. T.;
Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827. (h) Trost,
B. M.; Terell, L. R. J. Am. Chem. Soc. 2003, 125, 338.
(3) (a) Review: Crimmins, M. T.; Nantermet, P. G. Org. Prep.
Proced. Int. 1993, 25, 41. (b) Review: Hoppe, D.; Hense, T.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2283; Angew. Chem.
1997, 109, 2377. (c) Review: Ahlbrecht, H.; Beyer, U.
Synthesis 1999, 365. (d) Nakamura, E.; Kuwajima, I. J. Am.
Chem. Soc. 1985, 107, 2138. (e) McWilliams, J. C.;
Armstrong, J. D. III; Zheng, N.; Bhupathy, M.; Volante, R.
P.; Reider, P. J. J. Am. Chem. Soc. 1996, 118, 11970.
(f) DeCamp, A. E.; Kawaguchi, A. T.; Volante, R. P.;
Shinkai, I. Tetrahedron Lett. 1991, 32, 1867. (g) Burke, E.
D.; Lim, N. K.; Gleason, J. L. Synlett 2003, 390.
(4) Westermann, B.; Krebs, B. Org. Lett. 2001, 3, 189.
(5) g-Amino acids have gained considerable attention due to
their helix forming properties when incorporated in peptides.
See: (a) Hintermann, T.; Gademann, K.; Jaun, B.; Seebach,
D. Helv. Chim. Acta 1998, 81, 983. (b) Seebach, D.; Beck,
A. K.; Brenner, M.; Gaul, C.; Heckel, A. Chimia 2001, 55,
831.
(6) A formal homoamino methylation was described in: Reissig,
H.-U.; Lorey, H. Liebigs Ann. Chem. 1986, 1914.
(7) (a) Nakamura, E.; Shimada, J.; Kuwajima, I.
Organometallics 1985, 4, 641. (b) Nakamura, E.; Oshino,
H.; Kuwajima, I. J. Am. Chem. Soc. 1986, 108, 3745.
(c) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.;
Kuwajima, I. J. Am. Chem. Soc. 1987, 109, 8056.
(8) (a) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron:
Asymmetry 1998, 9, 1. (b) Jørgensen, K. A.; Johannsen, M.;
Yao, S.; Audrian, H.; Thorauge, J. Acc. Chem. Res. 1999, 32,
605. (c) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000,
33, 325.
OEt
H
N
H
O
O
10
2
2
N
Me
N
O
11
N
O
Me
H
N
O
N
9
Me
Scheme 3
Indeed, by adding 1 to the chiral imine 9 in the presence
of Cu(OTf)2 only one addition product could be observed
in 41% yield. As revealed by NMR spectroscopy, product
10 was diastereomerically pure. In the presence of ZnCl2,
however, lactam formation can be observed exclusively
(yield 19%). The structure of cyclized 11 could be deter-
mined by NMR- and by X-ray spectroscopy. The products
obtained in these reactions clearly revealed that the nu-
cleophilic attack of the homoenolate 1 was controlled by
the isopropyl moiety of the chiral auxiliary, which is effi-
ciently shielding the back of the imine moiety. The forma-
tion of the non-cyclized 10 can be explained by the
formation of TMSOTf, which is silylating the amide ion
formed as an intermediate from the homoenolate addition
Synlett 2005, No. 3, 473–476 © Thieme Stuttgart · New York