9740
P. Rajakumar, R. Kanagalatha / Tetrahedron 62 (2006) 9735–9741
118.2, 117.9, 115.5, 46.2, 44.1, 42.8, 40.7, 40.5, 40.3, 38.2;
m/z 874 (M+); Anal. Calcd for C54H50O7S2: C, 74.14; H,
5.72. Found: C, 74.15; H, 5.73.
7.87–7.89 (4H, m, Binol H), 7.38 (2H, s, Ph), 7.36 (4H, d,
J 9.2 Hz, Ph), 7.32–7.33 (4H, m, Ph), 7.30–7.31 (2H, m,
Binol H), 7.28–7.29 (2H, m, Binol H), 7.25 (4H, s, Binol
H), 5.11 (4H, s, CH2OPh), 3.95 (4H, s, CH2SPh), 3.38 (4H,
s, CH2SPh); 13C NMR (CDCl3) d 188.2, 155.2, 153.2,
152.8, 152.0, 149.7, 146.3, 137.6, 136.0, 136.4, 135.8,
133.5, 132.8, 129.1, 128.9, 127.6, 127.5, 127.4, 127.2,
123.1, 83.3, 80.7, 80.2, 80.1, 27.8; m/z 882 (M+); Anal. Calcd
for C54H42O8S2: C, 73.47; H, 4.76. Found: C, 73.48; H, 4.77.
3.8.4. Bicompartmental cyclophane 13. Colourless solid;
yield 19%; Rf 0.55 (hexane/CHCl3 3:1); [a]2D5 À108 (c 0.2,
CHCl3); mp 175–178 ꢀC; IR (cmÀ1) 2915, 1729, 1646,
1
1201, 693; H NMR (CDCl3) d 8.06 (2H, s, Ph), 8.02 (2H,
s, Ph), 7.90–7.95 (4H, m, Binol H), 7.8 (4H, d, J 8.4 Hz,
Ph), 7.41–7.44 (4H, m, Binol H), 7.34–7.35 (2H, m, Binol
H), 7.25–7.30 (2H, m, Binol H), 7.12 (4H, d, J 8.4 Hz,
Ph), 5.95 (4H, s, CH2OPh), 4.45 (4H, s, CH2OPh), 3.79
(4H, s, CH2SPh), 3.78 (4H, s, CH2SPh), 3.71 (3H, s,
OMe), 2.09 (3H, s, Me); 13C NMR (CDCl3) d 172.1,
152.6, 133.6, 133.4, 131.8, 131.3, 130.9, 130.7, 130.2,
129.4, 128.4, 128.2, 128.1, 127.7, 127.4, 127.2, 127.1,
126.9, 126.7, 126.3, 126.1, 125.9, 46.3, 42.9, 40.7, 40.6,
40.3, 28.2; m/z 926 (M+); Anal. Calcd for C56H46O9S2: C,
72.57; H, 4.97. Found: C, 72.58; H, 4.98.
3.9. Complexation studies
Charge transfer complexation studies were carried out by
preparing a 1Â10À6 M solution of cyclophanes 10, 19, 20
and 21 with gradual addition of acceptor (2 mg) in DMF
solvent (10 mL). Gradual addition of TCNQ to cyclophanes
10, 19, 20 and 21 rapidly increased the intensity of charge
transfer bands at 751, 775 and 850 nm. The equilibrium con-
stant was measured at 850 nm only. The equilibrium con-
stant for the CT complex derived from 10, 19, 20 and 21
with TCNE was measured at 849 nm though absorption
bands were also observed at 825 and 849 nm. Absorbance
was measured at a suitable wavelength while the concentra-
tion of TCNQ and TCNE was varied and the concentration
of the cyclophane receptor was kept constant. Plot of D0/A
(D0 is the concentration of cyclophane and A is the con-
centration of acceptor) versus 1/A0 (A0 is the absorbance
of the complex at charge transfer transition) gave a straight
line that indicated that the stoichiometry of the complex
was 1:1. Applying Benesi–Hildebrabd equation, the recipro-
cal of the intercept on the Y-axis was used to provide 3AD
(3 of the donor–acceptor complex) and from the slope of
3.8.5. Bicompartmental cyclophane 19. Colourless solid;
yield 19%; Rf 0.65 (hexane/CHCl3 3:1); mp 106–108 ꢀC;
1
IR (cmÀ1) 2914, 1620, 1190, 997, 670; H NMR (CDCl3)
d 7.51 (4H, d, J 5.4 Hz, Ph), 7.37 (4H, d, J 5.4 Hz, Ph),
7.05 (4H, d, J 8.4 Hz, Ph), 6.91 (4H, d, J 8.4 Hz, Ph), 5.15
(12H, s, CH2OPh), 4.55 (4H, s, CH2SPh), 4.09 (4H, s,
CH2SPh); 13C NMR (CDCl3) d 166.9, 162.4, 154.6, 134.5,
131.9, 131.7, 131.1, 129.4, 128.9, 114.4, 65.6, 65.2, 52.0,
30.1; m/z 830 (M+); Anal. Calcd for C52H46O6S2: C,
75.18; H, 5.54. Found: C, 75.19; H, 5.55.
3.8.6. Bicompartmental cyclophane 20. Colourless solid;
yield 17%; Rf 0.55 (hexane/CHCl3 3:1); mp 134–136 ꢀC;
IR (cmÀ1) 2952, 1610, 1200, 1005, 665; 1H NMR (CDCl3)
d 7.39–7.40 (2H, s, Ph), 7.33 (4H, d, J 8.6 Hz, Ph), 7.25
(2H, s, Ph), 7.21 (4H, d, J 8.6 Hz, Ph), 7.15 (4H, m, Ph),
6.82 (4H, d, J 8.6 Hz, Ph), 6.77 (4H, d, J 8.6 Hz, Ph), 4.55
(4H, s, CH2OPh), 4.50 (8H, s, CH2OPh), 4.43 (4H, s,
CH2SPh), 4.37 (4H, s, CH2SPh), 3.97 (3H, s, OMe), 3.80
(3H, s, Me); 13C NMR (CDCl3) d 170.4, 162.9, 162.8,
158.2, 154.6, 154.4, 142.7, 142.5, 134.7, 132.8, 132.5,
131.3, 131.2, 130.7, 130.5, 121.1, 121.0, 120.8, 62.7, 62.3,
60.5, 39.8, 32.5, 27.8, 20.7; m/z 874 (M+); Anal. Calcd for
C54H50O7S2: C, 74.14; H, 5.72. Found: C, 74.15; H, 5.73.
AD
the line Kc (equilibrium constant of the donor–acceptor
complex) was calculated. From this data the stability con-
stants of the charge transfer complexes of cyclophanes 10,
19, 20 and 21 with the acceptors TCNQ and TCNE were
determined.
Acknowledgements
R.K.L. thanks CSIR, New Delhi for financial assistance and
for the award of SRF. The authors thank, RSIC, IIT Madras,
CLRI, Chennai for recording NMR spectra, Mrs. K. Krish-
naveni, University of madras for recording mass spectra
and Ms Asharani, University of Madras for recording UV
spectra.
3.8.7. Bicompartmental cyclophane 21. Colourless solid;
yield 19%; Rf 0.6 (hexane/CHCl3 3:1); mp 157–160 ꢀC; IR
(cmÀ1) 2928, 1720, 1650, 1525, 1358, 1218, 628; 1H
NMR (CDCl3) d 7.83 (4H, m, Ph), 7.59 (4H, m, Ph), 7.57
(4H, d, J 6.9 Hz, Ph), 7.52 (4H, d, J 6.9 Hz, Ph), 6.99 (4H,
d, J 8.4 Hz, Ph), 6.66 (4H, d, J 8.4 Hz, Ph), 4.29 (4H, s,
CH2OPh), 4.10 (4H, s, CH2OPh), 3.98 (4H, s, CH2OPh),
3.86 (8H, s, CH2SPh), 2.47 (3H, s, COOMe); 13C NMR
(CDCl3) 163.4, 156.2, 140.1, 134.1, 132.9, 132.6, 132.0,
131.9, 130.5, 130.3, 129.9, 129.3, 129.2, 124.0, 115.8,
114.2, 113.9, 103.7, 77.6, 68.1, 67.9, 59.7, 53.4, 49.3,
35.0; m/z 933 (M+); Anal. Calcd for C54H47O10S2N: C,
69.45; H, 5.04. Found: C, 69.46; H, 5.05.
References and notes
1. (a) Miller, M. T.; Bachmann, B. O.; Townend, C. A.;
Rosenzwig, A. C. Nat. Struct. Biol. 2001, 8, 684; (b) Golden,
B. L.; Gooding, A. R.; Podell, E. R.; Cech, T. R. Science
1999, 282, 259.
2. Severin, K.; Lee, D. H.; Kennan, A. J.; Ghadiri, M. R. Nature
1997, 389, 706.
3. Myers, J. K.; Oas, T. G. Nat. Struct. Biol. 2001, 8, 552.
4. Toplova, M. G.; Tereshko, V.; Inamathi, G. B.; Cook, P. D.;
Manoharan, M.; Egli, M. Nat. Struct. Biol. 1999, 6, 535.
5. Burke, S. D.; Zhao, Q.; Schuster, M. C.; Kiessling, L. L. J. Am.
Chem. Soc. 2000, 123, 4518.
3.8.8. Bicompartmental cyclophane 22. Colourless solid;
yield 10%; Rf 0.5 (hexane/CHCl3 3:1); [a]2D5 À120 (c 0.2,
CHCl3); mp 118–120 ꢀC; IR (cmÀ1) 2958, 1710, 1201,
1
998, 706; H NMR (CDCl3) d 7.95 (4H, d, J 9.2 Hz, Ph),
6. Vinod, T. K.; Hart, H. J. Am. Chem. Soc. 1990, 112, 3250.