U. K. Roy, S. Roy / Tetrahedron Letters 48 (2007) 7177–7180
7179
2793; (c) Marshall, J. A. Chem. Rev. 2000, 100, 3163–
3185.
0
Pd / SnCl
2
SnCl Br
2
(I)
Br
2. (a) Thoonen, S.; Deelman, B. J.; Koten, G. V. Tetrahedron
2003, 59, 10261–10268; (b) Takahara, J. P.; Masuyama,
Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114, 2577–2586.
3. Selected references: (a) Tan, X.-H.; Shen, B.; Deng, W.;
Zhao, H.; Liu, L.; Guo, Q.-X. Org. Lett. 2003, 5, 1833–
1835; (b) Tan, X.-H.; Shen, B.; Liu, L.; Guo, Q.-X.
Tetrahedron Lett. 2002, 43, 9373–9376; (c) Imai, T.;
Nishida, S. J. Chem. Soc., Chem. Commun. 1994, 277–
278; (d) Masuyama, Y.; Takahara, J. P.; Kurusu, Y.
Tetrahedron Lett. 1989, 30, 3437–3440; (e) Masuyama, Y.;
Takahara, J. P.; Kurusu, Y. J. Am. Chem. Soc. 1988, 110,
4473–4474.
4. (a) Roy, U. K.; Roy, S. Tetrahedron 2006, 62, 678–683; (b)
Banerjee, M.; Roy, U. K.; Sinha, P.; Roy, S. J. Organo-
met. Chem. 2005, 690, 1422–1428; (c) Banerjee, M.; Roy,
S. Org. Lett. 2004, 6, 2137–2140; (d) Sinha, P.; Roy, S.
Organometallics 2004, 23, 67–71; (e) Banerjee, M.; Roy, S.
Chem. Commun. 2003, 534–535; (f) Kundu, A.; Prabhakar,
S.; Vairamani, M.; Roy, S. Organometallics 1999, 18,
2782–2785; (g) Kundu, A.; Prabhakar, S.; Vairamani, M.;
Roy, S. Organometallics 1997, 16, 4796–4799.
N
R
N
4-tolSO
2
Cl BrSn
2
4-tolSO
2
H O
2
N
O
S
H
R
R
2
(II)
O
4-tol
Scheme 2. Proposed pathway for the allylation of sulfonimines.
Using the optimized parameters, the reaction of allyl
bromide was tested with various sulfonimines (Table
2). The reactions were complete in 13–17 h. Sulfon-
imines 1e–j derived from substituted aromatic aldehydes
gave the corresponding homoallylamines 2e–n as the
exclusive products, and in good to excellent yields (en-
tries 1–10). It should be noted that both electron donat-
ing and withdrawing substituents on the aromatic ring
are amenable to the reaction. The reaction of crotyl bro-
mide with sulfonimines 1e–g and 1j resulted in forma-
tion of the corresponding homoallylamines 2k–n with
100% c-regioselectivity, but in varying syn/anti ratios
(entries 7–10).
5. (a) Felpin, F.-X.; Girard, S.; Vo-Thanh, G.; Robins, R. J.;
Villieras, J.; Lebreton, J. J. Org. Chem. 2001, 66, 6305–
6312; (b) Wright, D. L.; Schulte, J. P., II; Page, M. A. Org.
Lett. 2000, 2, 1847–1850; (c) Laschat, S.; Kunz, H. J. Org.
Chem. 1991, 56, 5883–5889.
6. Reviews: (a) Enders, D.; Reinhold, U. Tetrahedron:
Asymmetry 1997, 8, 1895–1946; (b) Yamamoto, Y.; Asao,
N. Chem. Rev. 1993, 93, 2207–2293.
While mechanistic explorations are warranted, a sug-
gestion is postulated in Scheme 2. Prior formation of
allyltrihalostannane I from allyl bromide and Pd(0)/
Sn(II) occurs via the well-known pathway involving
oxidative addition of allyl bromide across palladium
and insertion of SnCl2, followed by reductive elimina-
tion.2 Subsequently, the allyltin(IV) species could be
activated by the sulfonimine via N-, and O-coordina-
tion as in six-membered transition state II.9 Concomi-
tant SE20 attack followed by hydrolysis would furnish
the homoallylamine.
7. Selected recent references on imine allylation under non-
Barbier conditions: allyl-Mg/Zn: (a) Jain, R. P.; Williams,
R. M. J. Org. Chem. 2002, 67, 6361–6365; (b) Sluis, M. V.
D.; Dalmolen, J.; Lange, B. D.; Kaptein, B.; Kellogg, R.
M.; Broxterman, Q. B. Org. Lett. 2001, 3, 3943–3946; (c)
Jones, P.; Knochel, P. J. Org. Chem. 1999, 64, 186–195; (d)
El-Shehawy, A. A.; Omara, M. A.; Ito, K.; Itsuno, S.
Synlett 1998, 367–368; allyl-B: (e) Wada, R.; Shibuguchi,
T.; Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2006, 128, 7687–7691; (f) Solin, N.;
Wallner, O. A.; Szabo, K. J. Org. Lett. 2005, 7, 689–691; (g)
Itsuno, S.; Yokoi, A.; Kuroda, S. Synlett 1999, 1987–1989;
allyl-Si: (h) Rabbat, P. M. A.; Valdez, S. C.; Leighton, J. L.
Org. Lett. 2006, 8, 6119–6121; (i) Friestad, G. K.;
Korapala, C. S.; Ding, H. J. Org. Chem. 2006, 71, 281–
289; (j) Shimizu, M.; Itou, H.; Miura, M. J. Am. Chem.
Soc. 2005, 127, 3296–3297; (k) Yamasaki, S.; Fujii, K.;
Wada, R.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2002, 124, 6536–6537; (l) Billet, M.; Klotz, P.; Mann, A.
Tetrahedron Lett. 2001, 42, 631–634; (m) Wang, D.-K.;
Zhou, Y.-G.; Tang, Y.; Hou, X.-L.; Dai, L.-X. J. Org.
Chem. 1999, 64, 4233–4237; (n) Nakamura, K.; Nakamura,
H.; Yamamoto, Y. J. Org. Chem. 1999, 64, 2614–2615;
allyl-Sn: (o) Colombo, F.; Annunziata, R.; Benaglia, M.
Tetrahedron Lett. 2007, 48, 2687–2690; (p) Li, G.-I.; Zhao,
G. Synthesis 2006, 3189–3194; (q) Wallner, O. A.; Olsson,
V. J.; Eriksson, L.; Szabo, K. J. Inorg. Chim. Acta 2006,
359, 1767–1772; (r) Szabo, K. J. Synlett 2006, 811–824; (s)
Das, B.; Laxminarayana, K.; Ravikanth, B.; Ramarao, B.
Tetrahedron Lett. 2006, 47, 9103–9106; (t) Yin, Y.; Zhao,
G.; Li, G.-L. Tetrahedron 2005, 61, 12042–12052; (u)
Fernandes, R. A.; Stimac, A.; Yamamoto, Y. J. Am. Chem.
Soc. 2003, 125, 14133–14139; (v) Aspinall, H. C.; Bissett, J.
S.; Greeves, N.; Levin, D. Tetrahedron Lett. 2002, 43, 323–
325; (w) Fang, X.; Johannsen, M.; Yao, S.; Gathergood,
N.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 1999, 64,
4844–4849; (x) Nakamura, H.; Nakamura, K.; Yamamoto,
Y. J. Am. Chem. Soc. 1998, 120, 4242–4243.
In summary, we have presented a Pd(0)/SnCl2 mediated
Barbier-type allylation of imines.10 Due to the opera-
tional simplicity and mild conditions, this one-pot
allylation is expected to be attractive, and useful.
Investigations are underway to broaden the scope using
other conjugated imine systems possessing donor atoms.
Acknowledgements
S.R. thanks the DST for financial support. U.K.R.
thanks the UGC for a fellowship.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Reviews: (a) Li, C.-J. Chem. Rev. 2005, 105, 3095–3165;
(b) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–