Lu and Peters
incompatibility of high d-electron counts with multiply
bonded π-donor substituents,1 low-coordinate geometries
have provided one strategic path to circumvent this limitation.
The recent rise in literature reports of well-defined LnMdE
and LnMtE systems for the metals M ) Fe,27-33 Co,34-38
Ni,39-43 and Cu44,45 strongly attests to the viability of these
types of species for the first-row, mid-to-late metals.
nitride, [Mn(N)(NtBu)3]2-, which is supported by imido
ligands.59 Other relevant manganese imides from the Hurst-
house group include species of the type MnVII(NtBu)3X, as
well as the homoleptic compound [MnVI(NtBu)4]2-.60-62
Terminal Mn(V) imides are also stabilized by corroles, as
recently reported by Abu-Omar and co-workers.63-65 Finally,
elegant work from Groves and Carreira strongly implicates
Mn(V) acylimides (generated in situ from the nitrides) as
effective group-transfer catalysts to olefin and enol ether
substrates.47,55,66
Manganese compounds featuring multiply bonded terminal
functionalities such as nitrides and imides are far more
abundant than their later first-row counterparts.46 For ex-
ample, Mn(V) nitrides are well known to be stabilized by
various ligand auxiliaries, including porphyrins,47-51 mac-
rocyclic amines,52,53 cyanides,54 and Schiff bases.55-58 In
contrast, Mn(VI) and Mn(VII) nitrides are rare. Wieghardt
and co-workers generated two examples of Mn(VI) nitrides
in situ and assigned them from spectral data.52,54 Hursthouse
and co-workers isolated the sole example of a Mn(VII)
Our group has been investigating the tris(phosphino)borate
(generally denoted as [BP3]) and hybrid bis(phosphino)-
pyrazolylborate ([BP2(pz)]) ligands as scaffolds for MtE
linkages. Our endeavors have led to the characterization of
stable Co(III)36 and Fe(II/III) imides,27,29 as well as distinctive
examples of Fe(IV) imides and nitrides.28,67 Motivated by
these results, we wish to extend this chemistry to other mid-
to-late first-row metals such as Ni68 and Mn. In particular,
we are interested in whether [BP3]MntNx species (d3 and
d4) are electronically accessible and in defining synthetic
methods for their generation. In pursuit of this task, we began
to study aspects of the fundamental coordination chemistry
of previously unexplored [BP3]Mn systems. In this first study,
we report on the synthesis and characterization of a family
of monovalent- and divalent-manganese compounds sup-
ported by the [PhBPiPr3] ligand (where [PhBPiPr3] )
[PhB(CH2PiPr2)3]-), some of which might ultimately serve
as precursors for the preparation of [BP3]MntNx species.
Complementary theoretical studies are described for hypo-
thetical imide [PhBPiPr3]Mn(NtBu) and nitride [PhBPiPr3]Mn-
(N) systems. These species appear to be plausible target
structures on the basis of electronic considerations. While
studies toward well-defined [BP3]MntNx systems are ongo-
ing, the four-coordinate [PhBPiPr3]Mn(II) species that are
described here represent structurally unusual examples of
low-coordinate manganese complexes supported by poly-
phosphine ligands.
(26) Verma, A. K.; Nazif, T. N.; Achim, C.; Lee, S. C. J. Am. Chem. Soc.
2000, 122, 11013.
(27) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 1913.
(28) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 6252.
(29) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 322.
(30) Klinker, E. J.; Kaizer, J.; Brennessel, W. W.; Woodrum, N. L.; Cramer,
C. J.; Que, L. Angew. Chem., Int. Ed. 2005, 44, 3690.
(31) Rohde, J. U.; In, J. H.; Lim, M. H.; Brennessel, W. W.; Bukowski,
M. R.; Stubna, A.; Mu¨nck, E.; Nam, W.; Que, L. Science 2003, 299,
1037.
(32) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J. U.; Song, W. J.; Stubna,
A.; Kim, J.; Mu¨nck, E.; Nam, W.; Que, L. J. Am. Chem. Soc. 2004,
126, 472.
(33) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J. Am. Chem. Soc.
2006, 128, 5302.
(34) Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A. L.;
Theopold, K. H. Angew. Chem., Int. Ed. 2005, 44, 1508.
(35) Dai, X. L.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126,
4798.
(36) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002,
124, 11238.
(37) Termaten, A. T.; Aktas, H.; Schakel, M.; Ehlers, A. W.; Lutz, M.;
Spek, A. L.; Lammertsma, K. Organometallics 2003, 22, 1827.
(38) Sanchez-Nieves, J.; Sterenberg, B. T.; Udachin, K. A.; Carty, A. J. J.
Am. Chem. Soc. 2003, 125, 2404.
(39) Mindiola, D. J.; Hillhouse, G. L. Chem. Commun. 2002, 1840.
(40) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 9976.
(41) Melenkivitz, R.; Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc.
2002, 124, 3846.
II. Results and Discussion
(42) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2001, 123, 4623.
(43) Kogut, E.; Wiencko, H. L.; Zhang, L. B.; Cordeau, D. E.; Warren, T.
H. J. Am. Chem. Soc. 2005, 127, 11248.
(44) Dai, X. L.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 10085.
(45) Straub, B. F.; Hofmann, P. Angew. Chem., Int. Ed. 2001, 40, 1288.
(46) Eikey, R. A.; Abu-Omar, M. M. Coord. Chem. ReV. 2003, 243, 83.
(47) Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073.
(48) Buchler, J. W.; Dreher, C.; Lay, K. L.; Lee, Y. J. A.; Scheidt, W. R.
Inorg. Chem. 1983, 22, 888.
Synthesis and Characterization of [PhBPiPr3]Mn(II)
Halides. The Mn(II) halides [PhBPiPr3]MnCl (1) and [PhBPiPr3]-
MnI (2) were readily prepared by mixing the thallium reagent
(59) Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M.
B. J. Chem. Soc., Dalton Trans. 1995, 205.
(60) Danopoulos, A. A.; Green, J. C.; Hursthouse, M. B. J. Organomet.
Chem. 1999, 591, 36.
(61) Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M.
B. J. Chem. Soc., Dalton Trans. 1995, 937.
(49) Hill, C. L.; Hollander, F. J. J. Am. Chem. Soc. 1982, 104, 7318.
(50) Buchler, J. W.; Dreher, C.; Lay, K. L. Z. Naturforsch., B: Chem. Sci.
1982, 37, 1155.
(51) Dehnicke, K.; Strahle, J. Angew. Chem., Int. Ed. Engl. 1981, 20, 413.
(52) Meyer, K.; Bendix, J.; Metzler-Nolte, N.; Weyhermu¨ller, T.; Wieghardt,
K. J. Am. Chem. Soc. 1998, 120, 7260.
(53) Niemann, A.; Bossek, U.; Haselhorst, G.; Wieghardt, K.; Nuber, B.
Inorg. Chem. 1996, 35, 906.
(54) Bendix, J.; Meyer, K.; Weyhermu¨ller, T.; Bill, E.; Metzler-Nolte, N.;
Wieghardt, K. Inorg. Chem. 1998, 37, 1767.
(55) Du Bois, J.; Tomooka, C. S.; Hong, J.; Carreira, E. M. Acc. Chem.
Res. 1997, 30, 364.
(56) Du Bois, J.; Tomooka, C. S.; Hong, J.; Carreira, E. M.; Day, M. W.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1645.
(57) Chang, C. J.; Connick, W. B.; Low, D. W.; Day, M. W.; Gray, H. B.
Inorg. Chem. 1998, 37, 3107.
(62) Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M.
B. J. Chem. Soc., Dalton Trans. 1994, 1037.
(63) Abu-Omar, M. M.; Shields, C. E.; Edwards, N. Y.; Eikey, R. A. Angew.
Chem., Int. Ed. 2005, 44, 6203.
(64) Edwards, N. Y.; Eikey, R. A.; Loring, M. I.; Abu-Omar, M. M. Inorg.
Chem. 2005, 44, 3700.
(65) Eikey, R. A.; Khan, S. I.; Abu-Omar, M. M. Angew. Chem., Int. Ed.
2002, 41, 3592.
(66) Du Bois, J.; Hong, J.; Carreira, E. M.; Day, M. W. J. Am. Chem. Soc.
1996, 118, 915.
(67) Thomas, C. M.; Mankad, N. P.; Peters, J. C. J. Am. Chem. Soc. 2006,
128, 4956.
(68) MacBeth, C. E.; Thomas, J. C.; Betley, T. A.; Peters, J. C. Inorg.
Chem. 2004, 43, 4645.
(58) Chang, C. J.; Low, D. W.; Gray, H. B. Inorg. Chem. 1997, 36, 270.
8598 Inorganic Chemistry, Vol. 45, No. 21, 2006