analogs 1 and 2 (Figure 1) are representative. Analog 1
exhibits in vitro and in vivo biological activities comparable
to or better than bryostatin 1 in various assays.11 Analog 2,
which lacks the A-ring found in bryostatin 1, represents the
simplest analog reported to date that maintains high binding
affinity.10 The availability of these analogs in quantity and
the ability to tune them for performance has now enabled
several mode of action and preclinical studies to move
forward.
Bryostatin’s activity is thought to arise from its binding
to the regulatory domain of certain proteins, including kinases
such as protein kinase C (PKC). Since this domain is found
in only a small subset of the human kinome, targeting this
domain could lead to selective kinase regulation.12 In
addition, unlike many ligands that serve as kinase inhibitors
at the ATP binding site, binding to the C1 domain can result
in inhibition or activation. This “gain of function” activity
has many basic and therapeutic ramifications. A purpose of
our ongoing studies in this area is to design agents that would
bind to the C1 domain and offer, as needed, selective
regulation of kinase isoforms. Bryostatin binds to two
subclasses of PKC, the conventional and novel isoforms.13
It has been hypothesized that the “recognition” domain is
responsible for direct interaction with the binding pocket,10
and as such, functionality on the A- and B-rings of bryostatin
could be responsible for selectivity between these two classes
of PKC. Previous work has shown that the B-ring could be
replaced with a 5- or 6-membered dioxolane ring while
maintaining high potency and affecting selectivity.14 Recent
efforts have been directed at a new family of analogs
incorporating B-ring functionalities at C13 that could be
diversified to probe for potency and selective binding to PKC
isoforms. An ester was chosen in order to mimic the B-ring
ester of bryostatin, and terminal olefins were chosen in order
to diversify analogs through late-stage cross-metathesis. We
describe herein the synthesis of four new spacer domains
and their incorporation into the synthesis of the first
bryostatin analogs (3-6) derivatized at C13.
Figure 1. Bryostatin 1 and synthetic analogs.
research on its mode of action, and access to clinically
superior structural or functional analogs. While three impres-
sive total syntheses of the bryostatins have been completed,
each is over 70 steps and thus not able as yet to provide
sufficient material to impact the clinical supply.8 More
importantly, bryostatin 1 is produced in nature for uses other
than human therapy and is therefore not an optimized
therapeutic agent. Prompted by these considerations and the
unique activity profile of bryostatin, our group initiated a
program directed at the design and synthesis of simplified
bryostatin analogs that can be produced in a practical, step-
economical fashion and tuned for optimal performance in
the clinic.9 This function-oriented design and synthesis
approach10 has produced several promising leads of which
The spacer domains of analogs 5 and 6 are pseudo-C2-
symmetric with respect to the axis bisecting the A-ring
oxygen.15 This pseudosymmetry was exploited to efficiently
and step economically synthesize B-ring analogs lacking the
A-ring (Scheme 1). Toward this end, the Blaise reaction16
proceeded in high yield to join 2 equiv of acetate 7 to
symmetric ether 8 to produce the symmetric bis-â-keto ester
9. This diketone smoothly underwent a double Noyori
asymmetric reduction,17 selectively producing only one
(7) Schaufelberger, D. E.; Koleck, M. P.; Beutler, J. A.; Vatakis, A. M.;
Alvarado, A. B.; Andrews, P.; Marzo, L. V.; Muschik, G. M.; Roacch, J.;
Ross, J. T.; Lebherz, W. B.; Reeves, M. P.; Eberwein, R. M.; Rodgers, L.
L.; Testerman, R. P.; Snader, K. M.; Forenza, S. J. Nat. Prod. 1991, 54,
1265-1270.
(8) (a) Evans, D. A.; Carter, P. H.; Carreira, E. M.; Charette, A. B.;
Prunet, J. A.; Lautens, M. J. Am. Chem. Soc. 1999, 121, 7540-7552. (b)
Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts, J. C.; Somfai, P.;
Whritenour, D. C.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7407-
7408. (c) Ohmori, K.; Ogawa, Y.; Obitsu, T.; Ishikawa, Y.; Nishiyama, S.;
Yamamura, S. Angew. Chem., Int. Ed. 2000, 39, 2290-2294. For other
work on the bryostatins see: Keck, G. E.; Welch, D. S.; Vivian, P. K. Org.
Lett. 2006, 8, 3667-3670. Voight, E. A.; Seradj, H.; Roethle, P. A.; Burke,
S. D. Org. Lett. 2004, 6, 4045-4048. Hale, K. J.; Frigerio, M.; Manaviazar,
S. Org. Lett. 2003, 5, 503-505. Cho, C.-W.; Krische, M. J. Org. Lett. 2006,
8, 891-894 and references therein.
(9) (a) Wender, P. A.; Cribbs, C. M.; Koehler, K. F.; Sharkey, N. A.;
Herald, C. L.; Kamano, Y.; Pettit, G. R.; Blumberg, P. M. Proc. Natl. Acad.
Sci. U.S.A. 1988, 85, 7197-7201. (b) Wender, P. A.; De Brabander, J.;
Harran, P. G.; Jimenez, J. M.; Koehler, M. F. T.; Lippa, B.; Park, C. M.;
Siedenbiedel, C.; Pettit, G. R. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 6624-
6629. (c) For other efforts toward bryostatin analogs, see: Keck, G. E.;
Truong, A. P. Org. Lett. 2005, 7, 2153-2156. Hale, K. J.; Frigerio, M.;
Manaviazar, S.; Hummersone, M. G.; Fillingham, I. J.; Barsukov, I. G.;
Damblon, C. F.; Gescher, A.; Robert, G. C. K. Org. Lett. 2003, 5, 499-
502. Ball, M.; Bradshaw, B. J.; Dumeunier, R.; Gregson, T. J.; MacCormick,
S.; Omori, H.; Thomas, E. J. Tetrahedron. Lett. 2006, 47, 2223-2227 and
references cited therein.
(10) Wender, P. A.; Baryza, J. L.; Brenner, S. E.; Clarke, M.O.; Craske,
M. L.; Horan, J. C.; Meyer, T. Curr. Drug DiscoV. Tech. 2004, 1, 1-11.
(11) Wender, P. A.; Baryza, J. L.; Bennett, C. E.; Bi, F. C.; Brenner, S.
E.; Clarke, M. O.; Horan, J. C.; Kan, C.; Lacoˆte, E.; Lippa, B. S.; Nell, P.
G.; Turner, T. M. J. Am. Chem. Soc. 2002, 124, 13648-13649.
(12) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam,
S. Science 2002, 298, 1912-1934.
(13) For a review on PKC, see: Newton, A. C. Chem. ReV. 2001, 101,
2353-2364.
(14) Wender, P. A.; Verma, V. A. Org. Lett. 2006, 8, 1893-1896.
(15) Wender, P. A.; Horan, J. C. Org. Lett. 2006, 8, 4581-4584.
(16) Hannick, S. M.; Kishi, Y. J. Org. Chem. 1983, 48, 3833-3835.
(17) Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.;
Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856-
5858.
5300
Org. Lett., Vol. 8, No. 23, 2006