Please do not adjust margins
Chemical Science
Page 6 of 9
ARTICLE
non-photo-responsive squaramide derivative (ESI), confirmed
the role of photo-switch 1a in the photo-switchable transport
behaviour (Figure S147).
Conclusions
We have demonstrated reversible, visible light control over
transmembrane anion transport using a synthetic photo-
switchable anion carrier. Fluorescence anion transport assays in
combination with ISE experiments demonstrate the ability of
the squaramide-substituted azobenzenes to act as mobile anion
carriers. Switching between the less active E isomer and more
active Z isomer can be achieved with red light, whilst back-
switching takes place using blue light; allowing for in-situ,
temporal control over transmembrane ion transport in lipid
bilayer vesicles. We anticipate that these results will provide the
foundation for developing sophisticated photo-controlled
membrane transport systems, with potential longer term
impact in targeted therapeutics and synthetic biology.
6
7
Busschaert, R. B. P. Elmes, D. D. Czech, X. Wu, I. L. Kirby, E.
M. Peck, K. D. Hendzel, S. K. Shaw, B. Chan, B. D. Smith, et
Conflicts of interest
There are no conflicts to declare
al., Chem. Sci., 2014,
5, 3617. (c) Y. R. Choi, B. Lee, J. Park,
W. Namkung, K.-S. Jeong, J. Am. Chem. Soc., 2016, 138
,
15319–15322. (d) X. Wu, J. R. Small, A. Cataldo, A. M.
Withecombe, P. Turner, P. A. Gale, Angew. Chem. Int. Ed.,
2019, 58, 15142–15147. For a visible light responsive cation
transporter see: (e) T. Jin, Mater. Lett. 2007, 61, 805-808.
For UV-triggered anion transporters see: (f) Y. Rin Choi, G.
Chan Kim, H.-G. Jeon, J. Park, W. Namkung, K.-S. Jeong,
Chem. Commun., 2014, 50, 15305–15308. (g) S. B. Salunke,
J. A. Malla, P. Talukdar, Angew. Chem. Int. Ed., 2019, 58
5354–5358.
S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, O. Manabe, J.
Am. Chem. Soc., 1981, 103, 111–115.
For selected recent reviews on molecular machines
including those exploiting photo-switches see: (a) S. Erbas-
Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer,
Chem. Rev., 2015, 115, 10081–10206. (b) V. Blanco, D. A.
Leigh, V. Marcos, Chem. Soc. Rev., 2015, 44, 5341–5370. (c)
L. van Dijk, M. J. Tilby, R. Szpera, O. A. Smith, H. A. P. Bunce,
Acknowledgements
A.K. thanks the EPSRC Centre for Doctoral Training in Synthesis
for Biology and Medicine for a studentship (EP/L015838/1),
generously supported by AstraZeneca, Diamond Light Source,
Defence Science and Technology Laboratory, Evotec,
GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda,
UCB and Vertex. MJL acknowledges funding from the Royal
Society, the John Fell Oxford University Press Research Fund,
the University of Oxford’s EPSRC Capital Award in Support of
Early Career Researchers (EP/S017658/1), and SCG Chemicals
Co. Ltd. for funding through the SCG-Oxford Centre of
Excellence in Chemistry: SCG Innovation Fund. M.J.L. is a Royal
Society University Research Fellow.
,
8
9
S. P. Fletcher, Nat. Rev. Chem., 2018, 2, 1–18.
10 A. A. Beharry, G. A. Woolley, Chem. Soc. Rev., 2011, 40
4422–4437.
,
11 (a) V. Saggiomo, S. Otto, I. Marques, V. Félix, T. Torroba, R.
Quesada, Chem. Commun., 2012, 48, 5274–5276. (b) N.
Busschaert, S. J. Bradberry, M. Wenzel, C. J. E. Haynes, J. R.
Hiscock, I. L. Kirby, L. E. Karagiannidis, S. J. Moore, N. J. Wells,
Notes and references
1
G. Miesenböck, Annual Review of Cell and Developmental
Biology, 2011, 27, 731–758.
J. Herniman, et al., Chem. Sci., 2013, 4, 3036–3045.
2
(a) W. A. Velema, W. Szymanski, B. L. Feringa, J. Am. Chem.
Soc., 2014, 136, 2178–2191. (b) K. Hüll, J. Morstein, D.
Trauner, Chem. Rev., 2018, 118, 10710–10747.
12 X. Wu, L. W. Judd, E. N. W. Howe, A. M. Withecombe, V.
Soto-Cerrato, H. Li, N. Busschaert, H. Valkenier, R. Pérez-
Tomás, D. N. Sheppard, et al., Chem, 2016,
1, 127–146.
3
4
(a) G. Villar, A. D. Graham, H. Bayley, Science, 2013, 340, 48–
52. (b) Y. Elani, R. V. Law, O. Ces, Therapeutic Delivery, 2015,
13 S. J. Edwards, I. Marques, C. M. Dias, R. A. Tromans, N. R.
Lees, V. Félix, H. Valkenier, A. P. Davis, Chem. Eur., 2016, 22
2004–2011.
,
6
, 541–543. (c) K. P. Adamala, D. A. Martin-Alarcon, K. R.
Guthrie-Honea, E. S. Boyden, Nat. Chem., 2017, , 431–439.
9
14 H. M. Dhammika Bandara, S. C. Burdette, Chem. Soc. Rev.,
2012, 41, 1809–1825.
For recent reviews see: (a) J. T. Davis, O. Okunola, R.
Quesada, Chem. Soc. Rev., 2010, 39, 3843–3862; (b) S.
Matile, A. V. Jentzsch, J. Montenegro, A. Fin, Chem. Soc.
Rev., 2011, 40, 2453–2474. (c) P. A. Gale, J. T. Davis, R.
Quesada, Chem. Soc. Rev., 2017, 46, 2497–2519.
15 (a) A. A. Beharry, O. Sadovski, G. A. Woolley, J. Am. Chem.
Soc., 2011, 133, 19684–19687. (b) M. J. Hansen, M. M.
Lerch, W. Szymanski, B. L. Feringa, Angew. Chem. Int. Ed.,
2016, 55, 13514–13518. (c) D. Bléger, J. Schwarz, A. M.
Brouwer, S. Hecht, J. Am. Chem. Soc., 2012, 134, 20597–
20600. (d) S. Samanta, A. A. Beharry, O. Sadovski, T. M.
McCormick, A. Babalhavaeji, V. Tropepe, G. A. Woolley, J.
5
(a) B. Díaz de Greñu, P. I. Hernández, M. Espona, D.
Quiñonero, M. E. Light, T. Torroba, R. Pérez‐Tomás, R.
Quesada, Chem. Eur., 2011, 17, 14074–14083. (b) S.-K. Ko,
S. K. Kim, A. Share, V. M. Lynch, J. Park, W. Namkung, W. Van
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins