Paper
Organic & Biomolecular Chemistry
4 For example: (a) Y. Fukuda and K. Utimoto, J. Org. Chem., 14 Reviews: (a) R. Berger, G. Resnati, P. Metrangolo, E. Weber
1991, 56, 3729–3731; (b) J. H. Teles, S. Brode and
M. Chabanas, Angew. Chem., Int. Ed., 1998, 37, 1415–1418;
(c) L. L. Santos, V. R. Ruiz, M. J. Sabater and A. Corma,
and J. Hulliger, Chem. Soc. Rev., 2011, 40, 3496–3508;
(b) J.-M. Vincent, Chem. Commun., 2012, 48, 11382–
11391.
Tetrahedron, 2008, 64, 7902–7909; (d) A. Leyva and 15 Selected reviews: (a) T. Liang, C. N. Neumann and T. Ritter,
A. Corma, J. Org. Chem., 2009, 74, 2067–2074; (e) N. Marion,
R. S. Ramón and S. P. Nolan, J. Am. Chem. Soc., 2009, 131,
448–449; (f) A. Corma, V. R. Ruiz, A. Leyva-Pérez and
M. Sabater, Adv. Synth. Catal., 2010, 352, 1701–1710;
(g) M. R. Kuram, M. Bhanuchandra and A. K. Sahoo, J. Org.
Chem., 2010, 75, 2247–2258; (h) J. J. Dunsford, K. J. Cavell
and B. M. Kariuki, Organometallics, 2012, 31, 4118–4121.
5 For example: (a) W. Wang, B. Xu and G. B. Hammond,
J. Org. Chem., 2009, 74, 1640–1643; (b) P. Nun, R. S. Ramón,
S. Gaillard and S. P. Nolan, J. Organomet. Chem., 2011, 696,
7–11; (c) J. Jeong, D. Ray and C. Oh, Synlett, 2012, 897–902.
6 Y. Oonishi, A. Gómez-Suárez, A. R. Martin and S. P. Nolan,
Angew. Chem., Int. Ed., 2013, 52, 9767–9771.
Angew. Chem., Int. Ed., 2013, 52, 8214–8264;
(b) M. G. Campbell and T. Ritter, Chem. Rev., 2015, 115,
612–633; (c) J. Charpentier, N. Früh and A. Togni, Chem.
Rev., 2015, 115, 650–682; (d) X. Liu, C. Xu, M. Wang and
Q. Liu, Chem. Rev., 2015, 115, 683–730; (e) X.-H. Xu,
K. Matsuzaki and N. Shibata, Chem. Rev., 2015, 115, 731–
764; (f) C. Ni, M. Hu and J. Hu, Chem. Rev., 2015, 115, 765–
825; (g) X. Yang, T. Wu, R. J. Phipps and F. D. Toste, Chem.
Rev., 2015, 115, 826–870; (h) S. Fustero, A. Simón-Fuentes,
P. Barrio and G. Haufe, Chem. Rev., 2015, 115, 871–930;
(i) T. Ahrens, J. Kohlmann, M. Ahrens and T. Braun, Chem.
Rev., 2015, 115, 931–972; ( j) P. R. Savoie and J. T. Welch,
Chem. Rev., 2015, 115, 1130–1190; (k) P. A. Champagne,
J. Desroches, J.-D. Hamel, M. Vandamme and J.-F. Paquin,
Chem. Rev., 2015, 115, 9073–9174.
7 R. M. P. Veenboer, S. Dupuy and S. P. Nolan, ACS Catal.,
2015, 5, 1330–1334.
8 M. N. Pennell, M. P. Kyle, S. M. Gibson, L. Male, 16 For a review on the synthesis and application of propargylic
P. G. Turner, R. S. Grainger and T. D. Sheppard, Adv. Synth.
Catal., 2016, 358, 1519.
fluorides, see: A. Hachem, D. Grée, S. Chandrasekhar and
R. Grée, Synthesis, 2017, 2101–2116.
9 (a) J. M. Ketcham, B. Biannic and A. Aponick, Chem. 17 For a review on the successful combination of fluorine
Commun., 2013, 49, 4157–4159; (b) A. Gómez-Suárez,
D. Gasperini, S. V. C. Vummaleti, A. Poater, L. Cavallo and
S. P. Nolan, ACS Catal., 2014, 4, 2701–2705.
chemistry and gold catalysis: J. Miró and C. del Pozo,
Chem. Rev., 2016, 116, 11924–11966.
18 G. A. Boswell Jr., W. C. Ripka, R. M. Scribner and
C. W. Tullock, Org. React., 1974, 21, 1–124.
10 (a) A. S. K. Hashmi, R. Salathé and W. Frey, Synlett, 2007,
1763; (b) F. M. Istrate, A. K. Buzas, I. D. Jurberg, 19 W. J. J. Middleton, J. Org. Chem., 1975, 40, 574–578.
Y. Odabachian and F. Gagosz, Org. Lett., 2008, 10, 925; 20 (a) G. S. Lal, G. P. Pez, R. J. Pesaresi and F. M. Prozonic,
(c) P. W. Davies, A. Cremonesi and N. Martin, Chem.
Commun., 2011, 47, 379; (d) R. B. Dateer, K. Pati and
Chem. Commun., 1999, 215–216; (b) G. S. Lal, G. P. Pez,
R. J. Pesaresi, F. M. Prozonic and H. Cheng, J. Org. Chem.,
1999, 64, 7048–7054.
R.-S.
Liu,
Chem.
Commun.,
2012,
48,
7200;
(e) M. C. B. Jaimes, V. Weingand, F. Rominger and 21 (a) F. Beaulieu, L.-P. Beauregard, G. Courchesne,
A. S. K. Hashmi, Chem. – Eur. J., 2013, 19, 12504.
11 D. O’Hagan, Chem. Soc. Rev., 2008, 37, 308–319.
M. Couturier, F. Laflamme and A. L’Heureux, Org. Lett.,
2009, 11, 5050–5053; (b) A. L’Heureux, F. Beaulieu,
C. Bennet, D. R. Bill, S. Clayton, F. Laflamme,
M. Mirmehrabi, S. Tadayon, D. Tovell and M. Couturier,
J. Org. Chem., 2010, 75, 3401–3411; (c) O. Mahé,
A. L’Heureux, M. Couturier, C. Bennett, S. Clayton,
D. Tovell, F. Beaulieu and J.-F. Paquin, J. Fluorine Chem.,
2013, 153, 57–60.
12 Selected reviews: (a) K. Müller, C. Faeh and F. Diederich,
Science, 2007, 317, 1881–1886; (b) S. Purser, P. Moore,
S. Swallow and V. Gouverneur, Chem. Soc. Rev., 2008, 37,
320–330; (c) W. K. Hagmann, J. Med. Chem., 2008, 51,
4359–4369; (d) K. L. Kirk, Org. Process Res. Dev., 2008, 12,
305–321; (e) I. Ojima, Fluorine in Medicinal Chemistry and
Chemical Biology, Wiley-Blackwell, Chichester (UK), 2009; 22 T. Umemoto, R. P. Singh, Y. Xu and N. Saito, J. Am. Chem.
(f) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, Soc., 2010, 132, 18199–18205.
A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, 23 (a) I. V. Stepanov, A. I. Burmakov, B. V. Kunshenko,
Chem. Rev., 2014, 114, 2432–2506; (g) E. P. Gillis,
K. J. Eastman, M. D. Hill, D. J. Donnelly and
N. A. Meanwell, J. Med. Chem., 2015, 58, 8315–8359.
L. A. Alekseeva and L. M. Yagupol’skii, Zh. Org. Khim.,
1983, 19, 273; (b) R. P. Singh, U. Majumber and
J. M. Shreeve, J. Org. Chem., 2001, 66, 6263–6267;
(c) V. A. Petrov, S. Swearinger, W. Hong and W. C. Petersen,
J. Fluorine Chem., 2001, 109, 25–31; (d) L. M. Grieco,
G. A. Halliday, C. P. Junk, S. R. Lustig, W. J. Marshall and
V. A. Petrov, J. Fluorine Chem., 2011, 132, 1198–1206.
13 Selected reviews: (a) P. Jeschke, ChemBioChem, 2004, 5,
570–589; (b) P. Jeschke, Pest Manage. Sci., 2010, 66, 10–27;
(c) P. Jeschke, in The Unique Role of Halogen Substituents in
the Design of Modern Crop Protection Compounds in Modern
Methods in Crop Protection Research, ed. P. Jeschke, 24 For selected examples: (a) C. W. Buss, P. L. Coe and
W. Kraemer, U. Schirmer and M. Witschel, Wiley-VCH,
Weinheim (Germany), 2012, pp. 73–128; (d) T. Fujiwara and
D. O’Hagan, J. Fluorine Chem., 2014, 167, 16–29.
J. C. Tatlow, J. Fluorine Chem., 1986, 34, 83–104;
(b) J. M. Box, L. M. Harwood and R. Whitehead, Synlett,
1997, 571–573; (c) T. Ishimaru, S. Ogawa, E. Tokunaga,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2017