Dc = 1.182 g cm23, F(000) = 1148, m(Mo-Ka) = 1.041 mm21, 150(2) K,
5573 unique reflections [Rint 0.0960], R (on F) 0.0761, wR (on F2) 0.1116 (I
. 2s(I)). CCDC 616057–616060. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b610645e
nitrogen atoms (97% mean N-electron contribution). In addition, a
Wiberg bonding analysis revealed a Ge–Ge bond order of 0.8525
and an average Ge–N bond order of 0.439. Finally, the HOMO–
LUMO gap (1.913 eV; equiv. to lmax 647 nm) is of a similar energy
to an absorption band observed in the visible spectrum of 3 (lmax
568 nm).
§ Selected data for 3: Yield: 16%. Mp . 300 uC. 1H NMR (400 MHz,
C6D6, 298 K): d 0.41 (d, 3JHH = 6.8 Hz, 12 H, CH(CH3)2), 0.96 (s, 18 H,
C(CH3)3), 1.18 (d, 3JHH = 6.8 Hz, 12 H, CH(CH3)2), 1.37 (d, 3JHH = 6.8 Hz,
3
12 H, CH(CH3)2), 1.62 (d, JHH = 6.8 Hz, 12 H, CH(CH3)2), 3.56 (sept,
3
3JHH = 6.8 Hz, 4 H, CH(CH3)2), 3.79 (sept, JHH = 6.8 Hz, 4 H,
In light of the p-bonding LUMO of the model germanium
dimer and the fact that heavier group 14 alkyne analogues can be
singly or doubly reduced,10 DFT calculations were carried out on
the anionic species, [{Ge[(Ar9N)2CMe]}2]1 or 22. For the optimised
singly reduced model complex, the Ge–Ge bond length shortened
˚
by 0.09 A, while one Ge–N bond at each metal centre lengthened
˚
by ca. 0.5 A. This is to be expected since a population analysis
CH(CH3)2), 6.81–7.21 (m, 12 H, ArH); 13C{1H} NMR (75.6 MHz, C6D6,
298 K): d 23.5 (CH(CH3)2), 23.9 (CH(CH3)2), 24.4 (CH(CH3)2), 28.1
(CH(CH3)2), 28.4 (CH(CH3)2), 28.8 (CH(CH3)2), 29.9 (C(CH3)3), 42.5
(C(CH3)3), 123.6, 123.7, 126.1, 141.5, 144.2, 145.0 (ArC), 165.5 (backbone
CN2); UV/Vis: lmax/nm (c = 0.006 mol l21): 348 (intense), 438 (e = 501), 568
(e = 103); MS (EI 70 eV), m/z (%): 493.4 (K M+, 36), 420.4 (PisoH+, 6),
244.3 (PisoH+ 2 ArNH, 100); IR n/cm21 (Nujol): 1616 (s), 1586 (m), 1322
(m), 1260 (m), 1211 (m), 1171 (m), 1028 (m), 799 (s), 760 (m); 4: Yield: 13%.
Mp 200–203 uC (decomp.); 1H NMR (400 MHz, C6D6, 298 K): d 0.70 (d,
showed the molecular orbital energies and ordering to be close to
those of the neutral dimer, but with the additional electron
populating the LUMO which possesses bonding character between
the Ge centres and anti-bonding character between the Ge centres
and the amidinate ligands. Optimisation was unsuccessful for the
doubly reduced species, but it may be reasonable to propose
further strengthening of the Ge–Ge bond and destabilisation of the
Ge–ligand interactions. This is in line with our experimental
observation that reduction of 3 and 4 leads to their decomposition
to mixtures of products, including elemental germanium, K[Piso]
or K[Giso].
3
3JHH = 6.8 Hz, 12 H, CH(CH3)2), 0.93 (d, JHH = 6.8 Hz, 24 H,
3
CH(CH3)2), 1.33 (d, JHH = 6.8 Hz, 12 H, CH(CH3)2), 1.53 (d, JHH
3
=
6.8 Hz, 12 H, CH(CH3)2), 1.78 (d, 3JHH = 6.8 Hz, 12 H, CH(CH3)2), 3.89
3
3
(sept, JHH = 6.8 Hz, 4 H, CH(CH3)2), 4.03 (sept, JHH = 6.8 Hz, 4 H,
CH(CH3)2), 4.21 (sept, 3JHH = 6.8 Hz, 4 H, CH(CH3)2), 6.98–7.38 (m, 12 H,
ArH); 13C{1H} NMR (100.6 MHz, C6D6, 298 K): d 20.4 (CH(CH3)2), 20.7
(CH(CH3)2), 21.3 (CH(CH3)2), 23.0 (CH(CH3)2), 26.6 (CH(CH3)2), 26.7
(CH(CH3)2), 27.5 (CH(CH3)2), 46.5 (NCH(CH3)2), 121.4, 122.0, 126.5,
138.6, 144.5, 147.3 (ArC), 152.3 (backbone CN2); IR n/cm21 (Nujol): 1614
(m), 1581 (m), 1330 (s), 1280 (s), 1125 (s), 1046 (m), 800 (s), 756 (s); MS (EI
70 eV), m/z (%): 536.3 (K M+, 1), 420.3 (K M+ 2 Ge 2 Pri, 100); Acc.
Mass. EI: calc. for K M+: C31H48N3Ge1: 536.3055, found 536.3059.
In summary, we have prepared novel germanium(I) dimers
which are stabilised by bulky amidinate and guanidinate ligands.
Theoretical studies on a model complex suggest their Ge–Ge
bonds show no multiple bond character but their LUMOs are
p-bonding in nature, as is the case for distannynes. We are
currently exploring the further chemistry of germanium(I) dimers
and comparing it with that of ‘‘diradicaloid’’ digermynes.
We gratefully acknowledge financial support from the
Leverhume Trust (postdoctoral fellowship for AS), the EPSRC
(partial studentship for SPG) and the ERASMUS scheme of the
European Union (travel grant for K.-A.L). Thanks also go to the
EPSRC Mass Spectrometry Service.
1 See for example: (a) P. P. Power, Appl. Organomet. Chem., 2005, 19,
488; (b) P. P. Power, Chem. Commun., 2003, 2091; (c) M. Weidenbruch,
Angew. Chem., Int. Ed., 2003, 42, 2222; (d) P. Jutzi, Angew. Chem., Int.
Ed., 2000, 39, 3797 and references therein.
2 A. Sekiguchi, R. Kinjo and M. Ichinohe, Science, 2004, 305, 1755.
3 M. Stender, A. D. Phillips, R. J. Wright and P. P. Power, Angew.
Chem., Int. Ed., 2002, 41, 1785.
4 Y. Sugijama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi,
S. Nagase and N. Tokitoh, J. Am. Chem. Soc., 2006, 128, 1023.
5 A. D. Phillips, R. J. Wright, M. M. Olmstead and P. P. Power, J. Am.
Chem. Soc., 2002, 124, 5930.
6 L. Pu, B. Twamley and P. P. Power, J. Am. Chem. Soc., 2000, 122, 3524.
7 e.g., A. Sekiguchi, T. Yatabe, H. Kamatani, C. Kabuto and H. Sakurai,
J. Am. Chem. Soc., 1992, 114, 6260.
8 See for example: (a) Y. Jung, M. Brynda, P. P. Power and M. Head-
Gordon, J. Am. Chem. Soc., 2006, 128, 7185; (b) N. Takagi and
S. Nagase, Organometallics, 2001, 20, 5498; (c) Y. Chen, M. Hartmann,
M. Diedenhofen and G. Frenking, Angew. Chem., Int. Ed., 2001, 40,
2052.
Notes and references
{ Crystal data for 1: C29H43ClGeN2, M = 527.69, orthorhombic, space
˚
group Pna21, a = 18.515(4), b = 8.3709(17), c = 18.448(4) A, V =
3
2859.2(10) A , Z = 4, Dc = 1.226 g cm23, F(000) = 1120, m(Mo-Ka) =
9 C. Cui, M. M. Olmstead, J. C. Fettinger, G. H. Spikes and P. P. Power,
J. Am. Chem. Soc., 2005, 127, 17530.
˚
1.183 mm21, 150(2) K, 4919 unique reflections [Rint 0.0845], R (on F)
0.0548, wR (on F2) 0.1133 (I . 2s(I)); 2: C31H48ClGeN3, M = 570.76,
10 L. Pu, A. D. Phillips, A. F. Richards, M. Stender, R. S. Simons,
M. M. Olmstead and P. P. Power, J. Am. Chem. Soc., 2003, 125, 11626.
11 (a) C. Jones, P. C. Junk, J. A. Platts and A. Stasch, J. Am. Chem. Soc.,
2006, 128, 2206; (b) C. Jones, P. C. Junk, J. A. Platts, D. Rathmann and
A. Stasch, Dalton Trans., 2005, 2497.
12 Compound 2 has been used as a reagent in a recent report, though no
structural or spectroscopic data were given: S. P. Green, C. Jones,
K.-A. Lippert, D. P. Mills and A. Stasch, Inorg. Chem., 2006, 45, 7242.
13 Y. Ding, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt,
Organometallics, 2001, 20, 1190.
˚
monoclinic, space group Cc, a = 17.620(4), b = 12.441(3), c = 14.419(3) A,
b = 100.69(3)u, V = 3106.1(11) A , Z = 4, Dc = 1.221 g cm23, F(000) =
3
˚
1216, m(Mo-Ka) = 1.095 mm21, 150(2) K, 6076 unique reflections [Rint
0.0401], R (on F) 0.0643, wR (on F2) 0.1349 (I . 2s(I)); 3?(THF):
C62H94Ge2N4O, M = 1056.59, monoclinic, space group C2/c, a = 19.051(4),
3
˚
˚
b = 16.770(3), c = 19.911(4) A, b = 95.77(3)u, V = 6329(2) A , Z = 4, Dc =
1.109 g cm23, F(000) = 2264, m(Mo-Ka) = 0.989 mm21, 150(2) K, 6871
unique reflections [Rint 0.0488], R (on F) 0.0504, wR (on F2) 0.1112 (I .
2s(I)); 4: C62H96Ge2N6, M = 1070.63, monoclinic, space group P21/n, a =
˚
3
˚
11.818(2), b = 14.892(3), c = 17.589(4) A, b = 103.72(3)u, V = 3007.3(10) A ,
Z = 2,
14 As determined by a survey of the Cambridge Crystallographic
Database.
3980 | Chem. Commun., 2006, 3978–3980
This journal is ß The Royal Society of Chemistry 2006