ORGANIC
LETTERS
2006
Vol. 8, No. 25
5897-5899
Enantioselective Synthesis of
Functionalized Medium-Sized Oxacycles
Sunil V. Pansare* and Vikrant A. Adsool
Department of Chemistry, Memorial UniVersity of Newfoundland,
St. John’s, Newfoundland, Canada A1B 3X7
Received October 9, 2006
ABSTRACT
Enantioselective routes to functionalized, seven-, eight-, and nine-membered oxacycles that are amenable to further elaboration have been
developed. Salient features of the methodology include highly diastereoselective and regioselective transformations of an ephedrine-derived
epoxy morpholinone to functionalized precursors of the oxacycles. The ephedrine scaffold exerts remote stereocontrol in the functionalization
of the appended oxacycle.
Functionalized, heteroatom-containing rings are found in
several natural products, and simplified analogues as well
as structural motifs resembling these natural products are
interesting synthetic targets. In particular, the synthesis of
medium-sized oxacycles1 has attracted considerable attention,
and general2 as well as target-oriented3 strategies that address
the stereoselective assembly of such ring systems have been
extensively investigated in recent years. We chose to examine
the enantioselective construction of seven-, eight-, and nine-
membered oxacycles that are readily amenable to further
functionalization. Herein, we describe preliminary results
toward this objective.
of the oxacycle. We targeted unsaturated oxacycles bearing
the R-hydroxy acid functionality because the hydroxy and
carboxamide groups can be exploited for transannular
reactions and the alkene in the ring can be employed in
various addition processes.4 The precursors to the target
oxacycles are obtained from a common starting material, an
ephedrine-derived morpholine dione 1,5 which is readily
prepared (85%) from commercially available (1R,2S)-
(3) Recent reports: (a) Lee, H.; Kim, H.; Yoon, T.; Kim, B.; Kim, S.;
Kim, H.-D.; Kim, D. J. Org. Chem. 2005, 70, 8723. (b) Posner, G. H.;
Hatcher, M. A.; Maio, W. A. Org. Lett. 2005, 7, 4301. (c) Kaliappan, K.
P.; Kumar, N. Tetrahedron 2005, 7461. (d) Kadota, I.; Uyehara, H.;
Yamamoto, Y. Tetrahedron 2004, 60, 7361. (e) Batchelor, R.; Hoberg, J.
O. Tetrahedron Lett. 2003, 44, 9043. (f) Denmark, S. E.; Yang, S. M. J.
Am. Chem. Soc. 2002, 124, 15196. (g) Crimmins, M. T.; Emmitte, K. A.
Org. Lett. 1999, 1, 2029. (h) Crimmins, M. T.; Choy, A. L. J. Am. Chem.
Soc. 1999, 121, 5653. (i) Krueger, J.; Hoffmann, R. W. J. Am. Chem. Soc.
1997, 119, 7499. (j) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.;
Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483. (k)
Matthias, B.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem.
Soc. 1995, 117, 5958.
(4) Recent reports on transannular etherification: (a) Nguyen, G.;
Perlmutter, P.; Rose, M. L.; Vounatsos, F. Org. Lett. 2004, 6, 893. (b) Petri,
F. A.; Bayer, A.; Maier, M. E. Angew. Chem., Int. Ed. 2004, 43, 5821.
Recent reports on the halolactonization reaction: Mellegard, S. R.; Tuge,
J. A. J. Org. Chem. 2004, 69, 8979 and refs therein.
(5) (a) Rudchenko, V. F.; Shtamburg, V. G.; Pleshkova, A. P.; Kostyan-
ovskii, R. G. Bull. Acad. Sci. USSR DiV. Chem. Sci. (Engl. Transl.) 1981,
30, 825. (b) Pansare, S. V.; Bhattacharyya, A. Tetrahedron Lett. 2001, 42,
9265. For synthetic applications of other aminoalcohol-derived morpholi-
nones, see: (c) Cox, G. G.; Harwood, L. M. Tetrahedron: Asymmetry 1994,
9, 1669. (d) Williams, R. M. Aldrichimica Acta 1992, 25, 11.
The focus of our approach is the incorporation of
functional groups that can be utilized for further elaboration
(1) For reviews, see: (a) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004,
104, 2127. (b) Elliot, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 2301. (c)
Elliot, M. C. J. Chem. Soc., Perkin Trans. 1 2001, 2303.
(2) Recent reports: (a) Perez, M.; Canoa, P.; Gomez, G.; Teijeira, M.;
Fall, Y. Synthesis 2005, 411. (b) Fujiwara, K.; Goto, A.; Sato, D.; Kawai,
H.; Suzuki, T. Tetrahedron Lett. 2005, 46, 3465. (c) Mukai, C.; Ohta, M.;
Yamashita, H.; Kitagaki, S. J. Org. Chem. 2004, 69, 6867. (d) Sibi, M. P.;
Patil, K. P.; Rheault, T. R. Eur. J. Org. Chem. 2004, 372. (e) Alcazar, E.;
Pletcher, J. M.; McDonald, F. M. Org. Lett. 2004, 6, 3877. (f) Sawada, Y.;
Sasaki, M.; Takeda, K. Org. Lett. 2004, 6, 2277. (g) Martin, M.; Afonso,
M. M.; Galindo, A.; Palenzuela, J. A. Synlett 2001, 117. (h) Saitoh, T.;
Suzuki, T.; Onodera, N.; Sekiguchi, H.; Hagiwara, H.; Hoshi, T. Tetrahedron
Lett. 2003, 44, 2709. (i) Prasad, K. R. K.; Hoppe, D. Synlett 2000, 1067.
(j) Delgado, M.; Martin, J. D. J. Org. Chem. 1999, 64, 4798. (k) Mujica,
M. T.; Afonso, M. M.; Galindoa, A.; Palenzuela, J. A. J. Org. Chem. 1998,
63, 9728.
10.1021/ol062484v CCC: $33.50
© 2006 American Chemical Society
Published on Web 11/16/2006