5614
M. Pallavicini et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5610–5615
9. Elliott, R. L.; Ryther, K. B.; David, J. A.; Raszkiewicz, J.
L.; Campbell, J. E.; Sullivan, J. P.; Garvey, D. S. Bioorg.
Med. Chem. Lett. 1995, 5, 991.
10. Walker, D. P.; Jacobsen, J. E.; Acker, B. A.; Groppi, V.
E.; Piotrowski, D. W. PCT WO 03/042210, 2003.
11. Dei, S.; Bellucci, C.; Buccioni, M.; Ferrarono, M.;
Gualtieri, F.; Guandalini, L.; Manetti, D.; Matucci, R.;
Romanelli, M. N.; Scapecchi, S.; Deodori, E. Bioorg. Med.
Chem. 2003, 11, 3153.
replace pyridine nitrogen as HBA in the interaction with
the binding site. As shown in Figure 3 for (2R,20S)-2, the
benzene ring, whose plane makes a ffi55° angle with the
pyrrolidine plane, cannot overlay the pyridine ring of
nicotine because condensed with dioxane; however,
though entirely exceeding the overlap volume, it does
not preclude the interaction.
Finally, we would like to draw attention to the a2-AR
affinity of pyrrolidinylbenzodioxanes. Recently, Abelson
and Ho¨glund29 have demonstrated that a2-AR ligands,
such as clonidine, rilmenidine, and efaroxan, possess
micromolar or submicromolar affinity for rat spinal
cord receptors labelled by [3H]epibatidine and affect
spinal ACh release. Their observation would provide
strong evidence to that nicotinic receptors are involved
in the increase or decrease of intraspinal ACh produced
by the a2-AR ligands and in the antinociception medi-
ated by these later. Proceeding in the opposite direction,
we evidenced an analogous double-faced profile of bind-
ing affinity for a novel compound, namely (2R,20S)-2,
whose structure resembles that of a2-AR ligand idazo-
xan. Our findings are consistent with Abelson’s results,
indicating the same interesting coexistence of affinities
for two quite different receptor systems, an unexpected
feature, which could be not undesirable.
12. Ashton, W. T.; Cantone, C. L.; Meurer, L. C.; Tolman, R.
L.; Greenlee, W. J.; Patchett, A. A.; Lynch, R. J.; Schorn,
T. W.; Strouse, J. F.; Siegl, P. K. S. J. Med. Chem. 1992,
35, 2103.
13. Compound (2R,20S)-5: isolated as an oil after repeated
chromatographic separations on silica gel (eluent 99:1
dichloromethane/methanol); 1H NMR (CDCl3, 300 MHz)
d 1.50–1.90 (m, 4H), 2.35–2.60 (m, 2H), 3.20–4.20 (m, 8H),
5.00–5.20 (m, 2H), 7.15–7.45 (m, 15H). Analytical HPLC:
LiChrospher 5 lm or lPorasil 10 lm column, 98:2 dichlo-
romethane/methanol, 2 ml/min.
14. Compound (2R,20S)-6: isolated as an oil by chromatog-
raphy on silica gel (eluent: from 95:5 to 92:8 dichloro-
1
methane/methanol); H NMR (CDCl3, 300 MHz) d 1.15–
1.30 (m, 1H), 1.55–1.75 (m, 3H), 2.38 (s, 3H), 2.25–2.41
(m, 1H), 2.46–2.61 (m, 3H), 3.17–3.23 (m, 1H), 3.51 (d,
J = 13.4 Hz, 2H), 3.72 (d, J = 13.4 Hz, 2H), 3.98 (t, 1H),
7.18–7.39 (m, 10H).
15. Compound (2R,20S)-7: isolated as an oil by concentration
of the reaction solution in methanol after removal of the
catalyst; 1H NMR (CDCl3) d 1.67–1.86 (m, 4H), 2.30–2.51
(m, 2H), 2.44 (s, 3H), 2.79 (d, J = 5.9 Hz, 2H), 3.15–3.18
(m, 1H), 3.62 (br s, 3H, disappears on exchange with
D2O), 3.82–3.91 (m, 1H).
Acknowledgments
16. Compound (5R,20S)-1: mp 143–144 °C (isolated by chro-
This research was financially supported by funds of the
Italian Ministry of University and Scientific Research
(FIRB Grant RBNE03FH5Y 002). We are grateful to
Prof. Riccardo Stradi (University of Milan) for the help-
matography on silica gel; eluent 80:20 toluene/methanol);
20
D
½a ꢀ66.5 (c 0.4, MeOH); 1H NMR (CDCl3, 300 MHz) d
1.56–1.67 (m, 1H), 1.69–1.80 (m, 2H), 1.87–2.00 (m, 1H),
2.33 (pseudo q, J = 8.4 Hz, 1H), 2.42 (s, 3H), 2.62–2.68
(m, 1H), 3.05–3.11 (m, 1H), 3.51 (pseudo t, J = 8.4 Hz,
1H), 3.64 (pseudo t, J = 8.4 Hz, 1H), 4.66–4.73 (m, 1H),
5.80 (br s, 1H). Anal. Calcd for C8H14N2O2: C, 56.45; H,
8.29; N, 16.46. Found: C, 56.22; H, 8.36; N, 16.35.
1
ful discussion of the H NMR spectrum of (2R,20SR)-2
and to Dr. Marica Orioli (University of Milan) for mass
spectra of (1S,20S)-8 and (1R,8S)-9.
17. Crystallographic data of 1 were obtained using an Enraf
Nonius CAD-4 diffractometer (MoKa radiation) at room
temperature. The structures were solved by direct methods
[Altomare, A.; C. Burla, M.; Camalli, M.; Cascarano, G.;
Giacovazzo, C.; Gagliardi, A.; Polidori, G. J. Appl.
Crystallogr. 1994, 27, 435.] and the refinements were
carried out by full-matrix least-squares using SHELX-97
[Sheldrick, G. M.; SHELX-97, University of Go¨ttingen,
Germany]. The absolute configuration of oxazolidinone
asymmetric carbon was assigned on the basis of the known
chirality of the pyrrolidine asymmetric centre. CCDC-
616375 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge
the Cambridge Crystallographic Data Centre, 12, Union
Road, Cambridge CB21EZ, UK; fax: +44 1223 336 033;
or deposit@ccdc.cam.ac.uk).
References and notes
1. Jensen, A. A.; Frølund, B.; Liljefors, T.; Krogsgaard-
Larsen, P. J. Med. Chem. 2005, 48, 4705.
2. Tønder, J. E.; Olesen, P. H. Curr. Med. Chem. 2001, 8,
651.
3. Nicolotti, O.; Pellegrini-Calace, M.; Altomare, C.; Carotti,
A.; Carrieri, A.; Sanz, F. Curr. Med. Chem. 2002, 9, 1.
4. Mazurov, A.; Hauser, T.; Miller, C. H. Curr. Med. Chem.
2006, 13, 1567.
5. Pallavicini, M.; Moroni, B.; Bolchi, C.; Clementi, F.;
Fumagalli, L.; Gotti, C.; Vailati, S.; Valoti, E.; Villa, L.
Bioorg. Med. Chem. Lett. 2004, 14, 5827.
6. Mullen, G.; Napier, J.; Balestra, M.; DeCory, T.; Hale,
G.; Macor, J.; Mack, R.; Loch, J., III; Wu, E.; Kover, A.;
Verhoest, P.; Sampognaro, A.; Phillips, E.; Zhu, Y.;
Murray, R.; Griffith, R.; Blosser, J.; Gurley, D.; Mac-
hulskis, A.; Zongrone, J.; Rosen, A.; Gordon, J. J. Med.
Chem. 2000, 43, 4045.
7. Tatsumi, R.; Fujio, M.; Satoh, H.; Katayama, J.; Takan-
ashi, S.; Hashimoto, K.; Tanaka, H. J. Med. Chem. 2005,
48, 2678.
8. Elliott, R. L.; Kopecka, H.; Gunn, D. E.; Lin, N. H.;
Garvey, D. S.; Ryther, K. B.; Holladay, M. W.; Anderson,
D. J.; Campbell, J. E. Bioorg. Med. Chem. Lett. 1996, 6,
2283.
18. Johnson, C. K.; ORTEP 11, Report ORNL-5138, Oak
Ridge National Laboratory, TN, 1976.
20
D
19. Compound (5S,20R)-1: ½a +56.5 (c 0.4, MeOH); mp and
1H NMR identical to the enantiomer.
20. Compound (1S,20S)-8: isolated as an oil by chromatogra-
phy on silica gel (eluent: from 80:20 to 50:50 cyclohexane/
ethyl acetate); 1H NMR (CDCl3, 300 MHz) d 1.23 (d,
J = 6.2 Hz, 6H), 1.68–2.04 (m, 3H), 2.12–2.22 (m, 1H),
3.20–3.30 (m, 1H), 3.40–3.55 (m, 2H), 3.98–4.03 (m, 2H),
4.07–4.15 (m, 1H), 4.90 (sp, J = 6.2 Hz, 1H), 5.08 (s, 2H),