FULL PAPER
diluted with HPLC grade EtOAc. The reaction products were ana-
lysed by GC–MS (Agilent Technologies 7890 GC System), and the
epoxide produced from each reaction mixture was quantified vs.
mesitylene as the internal standard.
0.275 mmol) in methanol (5 mL). The orange mixture was stirred
and heated at 70 °C. After 2 h stirring, the white precipitate was
filtered off and washed with cold methanol affording 3a in 53%
1
yield (0.11 g). H NMR (300 MHz, CDCl3, 298 K): δ = 7.37 (d, J
= 2.4 Hz, 2 H), 6.97 (d, J = 2.4 Hz, 2 H), 4.48 (d, J = 13.8 Hz, 2
H), 4.40 (dd, J1 = 4.5, J2 = 2.6 Hz, 2 H), 4.06 (m, 2 H), 4.00 (d, J
= 13.8 Hz, 2 H), 3.96 (t, J = 5.8 Hz, 2 H), 3.07 (t, J = 5.8 Hz, 2
H), 2.86 (t, J = 5.8 Hz, 1 H), 1.46 (s, 18 H), 1.29 (s, 18 H) ppm.
13C NMR (75 MHz, CDCl3, 298 K): δ = 157.00, 143.55, 138.35,
124.68, 123.44, 122.01 (Ar-C), 68.99 (CH2), 62.51 (CH2), 61.43
(CH2), 54.36 (CH2), 35.20 [C(CH3)], 34.46 [C(CH3)], 31.79 (CH3),
[MoO2(1a)] (2a): Ligand 1a (0.305 g, 0.61 mmol) was dissolved in
hot acetonitrile (5 mL) and added to a solution of [MoO2(acac)2]
(0.2 g, 0.61 mmol) in acetonitrile (5 mL). The orange mixture was
stirred and heated at 70 °C to dissolve all solid material. After
20 min. stirring, the yellow precipitate was filtered and washed with
cold acetonitrile to afford 2a in 66% yield (0.25 g). 1H NMR
(300 MHz, CDCl3, 298 K): δ = 7.29 (d, J = 2.4 Hz, 2 H), 6.98 (d,
J = 2.4 Hz, 2 H), 4.47 (d, J = 13.7 Hz, 2 H), 3.91 (d, J = 13.7 Hz,
2 H), 3.76 (t, J = 5.3 Hz, 2 H), 2.96 (t, J = 5.6 Hz, 2 H), 1.40 (s,
18 H), 1.29 (s, 18 H) ppm. 13C NMR (75 MHz, CDCl3, 298 K): δ =
158.73, 142.99, 137.23, 124.10, 123.58, 122.25 (Ar-C), 62.68 (CH2),
58.49 (CH2), 55.47 (CH2), 35.17 [C(CH3)3], 34.48 [C(CH3)3], 31.81
30.33 (CH ) ppm. IR (ATM): ν = 2949, 1473, 1439, 1359, 1242,
˜
3
1226, 1203, 1167, 1040, 954, 944 (w, W=O), 899 (s, W=O), 880, 848,
832, 757, 746, 602, 559, 496 cm–1. C34H53NO6W (755.65): calcd. C
54.04, H 7.07, N 1.85; found C 53.91, H 6.93, N 1.96.
Supporting Information (see Footnote on the first page of this arti-
cle) Further X-ray crystallographic details for each structure, the
crystal structure data and structure refinement data, as well as ste-
reoscopic ORTEP plots of compounds 2a, 2b, 3a and 3b.
(CH ), 30.28 (CH ) ppm. IR (ATR): ν = 2958, 1471, 1439, 1262,
˜
3
3
1171, 928 (w, Mo=O), 917 (w, Mo=O), 874, 855, 757, 561,
473 cm–1. C32H49MoNO5·0.5CH3CN·0.45H2O (652.3): calcd. C
60.76, H 7.94, N 3.22; found C 60.51, H 7.66, N 2.97.
[MoO2(1b)] (2b): Ligand 1b (0.332 g, 0.61 mmol) was dissolved in
hot acetonitrile (5 mL) and added to a solution of [MoO2(acac)2]
(0.2 g, 0.61 mmol) in acetonitrile (5 mL). The orange mixture was
stirred and heated at 70 °C to dissolve all solid material. After
20 min. stirring, the yellow precipitate was filtered and washed with
cold acetonitrile to afford 2b in 74% yield (0.30 g). 1H NMR
(300 MHz, CDCl3): δ = 7.31 (d, J = 2.4 Hz, 2 H), 6.99 (d, J =
2.4 Hz, 2 H), 4.46 (dd, J1 = 4.6, J2 = 2.8 Hz, 2 H), 4.24 (d, J =
13.8 Hz, 2 H), 4.10 (m, 2 H), 4.05 (t, J = 5.8 Hz, 2 H), 3.99 (d, J
= 13.9 Hz, 2 H), 3.33 (t, J = 6.2 Hz, 1 H), 2.99 (t, J = 5.8 Hz, 2
H), 1.44 (s, 18 H), 1.29 (s, 18 H) ppm. 13C NMR (75 MHz, CDCl3):
δ = 159.21, 143.32, 137.11, 124.29, 123.65, 122.26 (Ar-C), 77.37
(CH2), 67.20 (CH2), 61.04 (CH2), 60.71 (CH2), 53.78 (CH2), 35.22
[C(CH3)3], 34.48 [C(CH3)3], 31.77 (CH3), 30.34 (CH3) ppm. IR
Acknowledgments
Financial support by the Austrian Science Fund (FWF) (grant
number P26264-N19) is gratefully acknowledged. This work was
carried out within the framework of EU COST Action CM1003,
Biological oxidation reactions – mechanisms and design of new
catalysts. M. K. H. thanks the European Commission for an Eras-
mus Mundus predoctoral fellowship.
[1] a) R. H. Holm, Coord. Chem. Rev. 1990, 100, 183–221; b) R.
Hille, Trends Biochem. Sci. 2002, 27, 360–367; c) M. J. Romão,
Dalton Trans. 2009, 4053–4068; d) R. Hille, T. Nishino, F.
Bittner, Coord. Chem. Rev. 2011, 255, 1179–1205; e) R. Hille,
Dalton Trans. 2013, 42, 3029–3042.
[2] R. Hille, J. Hall, P. Basu, Chem. Rev. 2014, 114, 3963–4038.
[3] R. H. Holm, E. I. Solomon, A. Majumdar, A. Tenderholt, Co-
ord. Chem. Rev. 2011, 255, 993–1015.
[4] a) H. Dobbek, Coord. Chem. Rev. 2011, 255, 1104–1116; b) P.
Basu, S. J. N. Burgmayer, Coord. Chem. Rev. 2011, 255, 1016–
1038.
[5] a) C. Lorber, J. P. Donahue, C. A. Goddard, E. Nordlander,
R. H. Holm, J. Am. Chem. Soc. 1998, 120, 8102–8112; b) J. P.
Donahue, C. Lorber, E. Nordlander, R. H. Holm, J. Am.
Chem. Soc. 1998, 120, 3259–3260; c) C. Schulzke, Eur. J. Inorg.
Chem. 2011, 1189–1199; d) K. Most, J. Hoßbach, D. Vidovic´,
J. Magull, N. C. Mösch-Zanetti, Adv. Synth. Catal. 2005, 347,
463–472.
(ATR): ν = 2950, 1470, 1438, 1358, 1242, 1227, 1203, 1168, 1044,
˜
931 (Mo=O), 896 (s, Mo=O), 880, 844, 831, 755, 744, 601, 580,
557, 494 cm–1. C34H53MoNO6 (667.8): calcd. C 61.16, H 8.00, N
2.10; found C 61.44, H 7.89, N 2.28.
[WO2(1a)] (3a): Ligand 1a (0.137 g, 0.275 mmol) was dissolved in
CHCl3 (5 mL) and added to a suspension of [W(eg)3] (0.1 g,
0.275 mmol) in methanol (5 mL). The orange mixture was stirred
and heated at 60 °C. After few minutes stirring, a white solid pre-
cipitated. The solid was filtered and washed with cold methanol
and 3a was isolated in 34% yield (0.07 g).
Alternative Synthesis of 3a: To a solution of [WO2(acac)2] (0.2 g,
0.48 mmol) in acetonitrile (5 mL) was added a solution of 1a
(0.24 g, 0.48 mmol) in acetonitrile (5 mL). The yellow-orange mix-
ture was stirred and heated at 70 °C. After 20 min, the yellow pre-
cipitate was filtered and washed with cold acetonitrile to ultimately
afford 3a as an off-white solid in 69% yield (0.24 g). 1H NMR
(300 MHz, [D4]MeOH): δ = 7.28 (d, J = 2.5 Hz, 2 H), 7.04 (d, J =
2.5 Hz, 2 H), 4.45 (d, J = 13.1 Hz, 2 H), 3.81 (d, J = 13.2 Hz, 2
H), 3.75 (t, J = 6.0 Hz, 2 H), 2.84 (t, J = 6.1 Hz, 2 H), 1.44 (s, 18
H), 1.28 (s, 18 H) ppm. 13C NMR (75 MHz, [D4]MeOH, 298 K): δ
= 159.33, 142.61, 139.10, 125.41, 125.07, 124.15 (Ar-C), 61.67
(CH2), 63.09 (CH2), 57.24 (CH2), 35.95 [C(CH3)3], 35.03 [C(CH3)
[6] A. Günyar, D. Betz, M. Drees, E. Herdtweck, F. E. Kühn, J.
Mol. Catal. A 2010, 331, 117–124.
[7] a) J. Kollar, US3350422 A, 1966; b) M. N. Sheng, G. J. Zajacek,
1136923, 1965; c) J. M. Brégeault, Dalton Trans. 2003, 3289–
3302; d) S. Shylesh, M. J. Jia, W. R. Thiel, Eur. J. Inorg. Chem.
2010, 4395–4410; e) IMOA International Molybdenum Asso-
ciation, Molybdenum Chemistry
& Uses, can be found
chemistry-uses/molybdenum-chemistry-uses.php.
[8] O. Wichmann, R. Sillanpää, A. Lehtonen, Coord. Chem. Rev.
2012, 256, 371–392.
[9] M. M. Hänninen, A. Peuronen, P. Damlin, V. Tyystjärvi, H.
Kivelä, A. Lehtonen, Dalton Trans. 2014, 43, 14022–14028.
[10] J. Hakala, R. Sillanpää, A. Lehtonen, Inorg. Chem. Commun.
2012, 21, 21–23.
[11] E. Safaei, M. Rasouli, T. Weyhermüller, E. Bill, Inorg. Chim.
Acta 2011, 375, 158–165.
[12] E. Laurén, H. Kivelä, M. Hänninen, A. Lehtonen, Polyhedron
2009, 28, 4051–4055.
], 32.19 (CH ), 30.73 (CH ) ppm. IR (ATR): ν = 2959, 1477, 1440,
˜
3
3
3
1264, 1241, 1203, 1172, 948 (s, W=O), 918 (w, W=O), 876, 857,
757, 560, 473 cm–1. C32H49NO5W (711.59): calcd. C 54.01, H 6.94,
N 1.97; found C 53.33, H 7.02, N 1.97.
[WO2(1b)] (3b): Ligand 1b (0.149 g, 0.275 mmol) was dissolved in
CHCl3 (5 mL) and added to a suspension of [W(eg)3] (0.1 g,
Eur. J. Inorg. Chem. 2015, 3572–3579
3578
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim