7
7. In Flow Chemistry, Darvas, F.;Dorman, G.; Hesel, V., Eds.,
solution in the vial had passed through the catalyst cartridge, the
path was rinsed with additional DMA (15 mL) to wash out the
remaining reagents. The combined DMA solution was diluted
with EtOAc (20 mL) and washed with H2O (10 mL), and the
layers were separated. The aqueous layer was further extracted
with EtOAc (20 mL). The combined organic layers were washed
with H2O (20 mL × 4) and brine (20 mL), and was transferred to
a 100 mL volumetric flask together with additional EtOAc. Its
atomic absorption analysis indicated that 1.249 ppm (124.9 ꢀg)
of Pd species were eluted from the 7% Pd/WA30-packed
cartridge into the organic layers. The combined aqueous layers
were also transferred to a 100 mL volumetric flask together with
additional H2O and its atomic absorption analysis indicated that
Pd species were not detected in the aqueous layer (< 1 ppm;
detection limit). The total Pd amounts leached from the catalyst
was found to be 124.9 ꢀg (ca. 1% of Pd).
ACCEPTED MANUSCRIPT
Walter de Gruyter GmbH, Berlin and Boston, 2014, vol 1.
8. (a) Achanta, S.; Liautard, V.; Paugh, R.; Organ, M. G. Chem. Eur.
J. 2010, 16, 12797–12800; (b) Noël, T.; Buchwald, S. Chem. Soc.
Rev. 2011, 40, 5010–5029; (c) Viviano, M.; Glasnov, T. N.;
Reichart, B.; Tekautz, G.; Kappe, C. O. Org. Process Res. Dev.
2011, 15, 858–870.
9. (a) Cantillo, D.; Kappe, C. O. ChemCatChem 2014, 6, 3286–3305;
(b) Frost, C. G.; Mutton, L. Green, Chem. 2010, 12, 1687–1703;
(c) Kirschning, A.; Solodenko, W.; Mennecke, K. Chem. Eur. J.
2006, 12, 5972–5990.
10. (a) Ӧhrngren, P.; Fardost, A.; Russo, F.; Schanche, J.-S.; Fagrell,
M.; Larhed, M. Org. Process Res. Dev. 2012, 16, 1053–1063; (b)
Moseley, J. D.; Woodman, E. K. Org. Process. Res. Dev. 2008, 12,
967–981.
11. For Mizoroki–Heck reaction using heterogeneous catalyst in flow
system: (a) K. Mennecke, W. Solodenko, A. Kirschning,
Synthesis, 2008, 10, 1589–1599; (b) Mennecke, K.; Kirschning, A.
Beilstein J. Org. Chem. 2009, 5, No. 21; (c) Konda, V.; Rydfjord,
J.; Sӓvmarker, J.; Larhed, M. Org. Process Res. Dev. 2014, 18,
1413–418.
The crude compounds obtained from the reaction using a
solution of 4'-iodoacetophenone (246 mg, 1 mmol), n-butyl
acrylate (285 ꢀL, 2 mmol), and Bu3N (716 ꢀL, 3 mmol) in DMA
(4 mL) under condition B was purified by silica gel column
chromatography using hexane/EtOAc (10 : 1) as the eluent to
give 2 (223 mg). The purified 2 was solved in EtOAc (100 mL)
using 100 mL volumetric flask. Its atom absorption analysis
indicated that no Pd species were observed (< 1 ppm; detection
limit).
12. Glasov, T. N.; Findernig, S.; Kappe, C. O. Chem. Eur. J. 2009, 15,
1001–1010.
13. Singh, B. K.; Kaval, N.; Tomar, S.; Eycken, E. V.; Parmar, V. S.
Org. Process. Res. Dev. 2008, 12, 468–474.
14. Microwave-assisted coupling reaction using heterogeneous
catalyst in flow system: (a) Shore, G.; Morin, S.; Mallik, D.;
Organ, M. G. Chem. Eur. J. 2008, 14, 1351–1356; (b) Ullah, F.;
Zhang, Q.; Javed, S.; Porubsky, P.; Neuenswander, B.;
Lushiznton, G. H.; Harson, P. R.; Organ, M. G. Synthesis 2012,
44, 2547–2554; (c) Sore, G.; Morin, S.; Organ, M. G. Angew.
Chem. int. Ed. 2006, 45, 2761–2766.
Acknowledgements
15. (a) Yokozawa, S.; Ohneda, N.; Muramatsu, K.; Okamoto, T.;
Odajima, H.; Ikawa, T.; Sugiyama, J.; Fujita, M.; Sawai, T.;
Egami, H.; Hamashima, Y.; Egi, M.; Akai, S. RSC Adv. 2015, 5,
10204–10210; (b) Musio, B.; Mariani, F.; Śliwiński, E. P.;
Kabeshov, M. A.; Odajima, H.; Ley, S. V. Synthesis 2016, 48,
3515–3526.
This work was partially supported by JSPS KAKENHI Grant
number 15K07863 and 16K15100. We sincerely appreciate the
N.E. Chemcat Co. and Mitsubishi Chemical Co. for providing the
Pd(OAc)2 and DIAION WA30, respectively.
16. For more information of DIAION WA30, see:
basic_anion/index.html.
References and notes
17. (a) Monguchi, Y.; Ichikawa, T.; Netsu, M.; Hattori, T.; Mizusaki.
T.; Sawama, Y.; Sajiki, H. Synlett 2015, 26, 2014–2018; (b)
Ichikawa, T.; Netsu, M.; Mizuno, M.; Mizusaki, T.; Takagi, Y.;
Sawama, Y.; Monguchi, Y.; Sajiki, H. Adv. Synth. Catal. 2017,
359, 2269–2279.
1.
In Metal-Catalyzed Cross-Coupling Reaction 2nd Ed., Meilere,
A. de.; Diederich, F., Eds., Willy-VCH, Weinheim, 2004, vols. 1
and 2.
2. (a) Mizoroki, T.; Mori, K.; Ozaki, A.; Bull. Chem. Soc. Jpn. 1971,
44, 581; (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37,
2320–2322.
3. Beletstskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100,
3009–3066.
18. In comparison with the Pd catalyst embedded on the unsubstituted
polystyrene-divinylbenzene polymer (10% Pd/HP20), 7%
Pd/WA30 was found to much more effectively catalyze the
Suzuki–Miyaura reaction of 4'-chloroacetophenone with
phenylboronic acid under the batch conditions due to the ligand
effect of tert-amino groups on DIAION WA30, see References
and notes 17b. For 10% Pd/HP20, see (a) Monguchi, Y.; Fujita,
Y.; Endo, K.; Takao, S.; Yoshimura, M.; Takagi, Y.; Maegawa,
T.; Sajiki, H. Chem. Eur. J. 2009, 15, 834–837; (b) Monguchi, Y.;
Sakai, K.; Endo, K.; Fujita, Y.; Niimura, M.; Yoshimura, M.;
Mizusaki, T.; Sawama, Y.; Sajiki, H. ChemCatChem 2012, 4,
546–558. A piece of DIAION WA30 is not finely powdered but
spherically shaped, and the future is an advantage for the flow
reactions to maintain the continuous, stable, and smooth flow of
reaction mixtures in the catalyst cartridge.
19. The homo-coupling reaction of 1 to generate 3 would have
proceeded in a similar manner to that of Ullman-type reaction.
Although the mechanism of the hydrodeiodination of 1 is not
clear, the deiodination of iodoarenes under Mizoroki–Heck
reaction conditions were reported; e.g., (a) Alonso, D. A.; Nájera,
C.; Pacheco, C. J. Org. Chem. 2002, 67, 5588–5594; (b) Perosa,
A.; Tundo, P.; Selvia, M.; Zinovyev, S.; Testa, A. Org. Biomol.
Chem. 2004, 2, 2249–2252.
20. The use of EtOAc (4 mL) or CPME (4 mL) as a solvent for the
present Mizoroki–Heck reaction of 1 (1 mmol) with n-butyl
acrylate (2 mmol) in the presence of Bu3N (3 mmol) under 10 W
MW irradiation at the 0.15 mL min–1 flow rate led to a poor
formation of 2 in only a 19% or 29% yield, respectively.
21. The heating effect of the MW irradiation depends on an electric
permittivity of the solution or solvent passing through a catalyst
cartridge. Since the reaction mixture contains aryl halide, alkene,
tributylamine, and products, which have each inherent electric
permittivity, the electric permittivity of the mixture differs from
4. For heterogeneous catalyst: (a) Yin, L.; Liebscher, J. Chem. Rev.
2007, 107, 133–173; (b) Climent, M. J.; Corma, A.; Iborra, S.
Chem. Rev. 2011, 111, 1072–1133; (c) Hussain, I.; Capricho, J.;
Yawer, M. A. Adv. Synth. Catal. 2016, 358, 3320–3349; (d)
Pascanu, V.; Hansen, P.R.; Gómez, A. B.; Ayats, C.; Platero–
Prats, A. E.; Johansson, M. J.; Periàs, M. À.; Martin–Matute, B.
ChemSusChem 2015, 8, 123–130.
5. For recent reports for the Mizoroki–Heck reaction using
heterogeneous catalyst: (a) Monguchi, Y.; Sakai, K.; Endo, K.;
Fujita, Y.; Niimura, M.; Yoshimura, M.; Mizusaki, T.; Sawama,
Y.; Sajiki, H. ChemCatChem 2012, 4, 546–558; (b) Naghipour,
A.; Fakhri, A. Catal. Commun. 2016, 73, 39–45; (c) Sienkiewicz,
N.; Strzelec, K.; Pospiech, P.; Cypryk, M.; Szmechtyk, T. Appl.
Organomet. Chem. 2016, 30, 4–11; (d) Hajipour, A.; Khorsandi,
Z. Appl. Organomet. Chem. 2016, 30, 256–261; (e)
Marulasiddeshwara, M. B.; Kumar, P. R. Int. J. Biol. Macromol.
2016, 83, 326–334; (f) Movassagh, B.; Parvis, F. S.; Navidi, M.
Appl. Organomet. Chem. 2015, 29, 40–44; (g) Taira, T.;
Yanagimoto, T.; Sakai, K.; Sakai, H.; Endo, A.; Imura, T.
Tetrahedron 2016, 71, 4117–4122; (h) Khazaei, A.; Khazaei, M.;
Rahmati, S. J. Mol. Cat. A 2015, 29, 241–247; (i) Putta, C.;
Sharvath, V.; Sarkar, S.; Ghosh, S. RSC Adv. 2015, 5, 6652–6660;
(j) Dong, Z.; Ye, Z. Appl. Catal. A 2015, 489, 61–71; (k) Yamada,
Y. M. A.; Yuyama, Y.; Sato, T.; Fujikawa, S.; Uozumi, Y. Angew.
Chem. Int. Ed. 2014, 53, 127–131.
6. Glasnov, T.; In Continuous-Flow Chemistry in the Research
Laboratory, Springer, Berlin, 2016.