Inhibitors of Histone Acetyltransferase
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 23 6907
(35) Stimson, L.; Rowlands, M. G.; Newbatt, Y. M.; Smith, N. F.;
Raynaud, F. I.; Rogers, P.; Bavetsias, V.; Gorsuch, S.; Jarman, M.;
Bannister, A.; Kouzarides, T.; McDonald, E.; Workman, P.; Aherne,
G. W. Isothiazolones as inhibitors of PCAF and p300 histone
acetyltransferase activity. Mol. Cancer Ther. 2005, 4, 1521-1532.
(36) Massa, S.; Mai, A.; Sbardella, G.; Esposito, M.; Ragno, R.; Loidl,
P.; Brosch, G. 3-(4-Aroyl-1H-pyrrol-2-yl)-N-hydroxy-2-propena-
mides, a new class of synthetic histone deacetylase inhibitors. J. Med.
Chem. 2001, 44, 2069-2072.
(37) Mai, A.; Massa, S.; Ragno, R.; Esposito, M.; Sbardella, G.; Nocca,
G.; Scatena, R.; Jesacher, F.; Loidl, P.; Brosch, G. Binding mode
analysis of 3-(4-benzoyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-pro-
penamide: a new synthetic histone deacetylase inhibitor inducing
histone hyperacetylation, growth inhibition, and terminal cell dif-
ferentiation. J. Med. Chem. 2002, 45, 1778-1784.
(38) Mai, A.; Massa, S.; Ragno, R.; Cerbara, I.; Jesacher, F.; Loidl, P.;
Brosch, G. 3-(4-Aroyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-alky-
lamides as a new class of synthetic histone deacetylase inhibitors. 1.
Design, synthesis, biological evaluation, and binding mode studies
performed through three different docking procedures. J. Med. Chem.
2003, 46, 512-524.
(39) Mai, A.; Massa, S.; Pezzi, R.; Rotili, D.; Loidl, P.; Brosch, G.
Discovery of (aryloxopropenyl)pyrrolyl hydroxamides as selective
inhibitors of class IIa histone deacetylase homologue HD1-A. J. Med.
Chem. 2003, 46, 4826-4829.
(40) Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Ragno, R.; Bottoni, P.;
Scatena, R.; Loidl, P.; Brosch, G. 3-(4-Aroyl-1-methyl-1H-2-pyrro-
lyl)-N-hydroxy-2-propenamides as a new class of synthetic histone
deacetylase inhibitors. 2. Effect of pyrrole C2 and/or C4 substitutions
on biological activity. J. Med. Chem. 2004, 47, 1098-1109.
(41) Ragno, R.; Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Bottoni, P.;
Scatena, R.; Jesacher, F.; Loidl, P.; Brosch, G. 3-(4-Aroyl-1-methyl-
1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a new class of syn-
thetic histone deacetylase inhibitors. 3. Discovery of novel lead
compounds through structure-based drug design and docking studies.
J. Med. Chem. 2004, 47, 1351-1359.
(42) Mai, A.; Massa, S.; Pezzi, R.; Simeoni, S.; Rotili, D.; Nebbioso, A.;
Scognamiglio, A.; Altucci, L.; Loidl, P.; Brosch, G. Class II (IIa)-
selective histone deacetylase inhibitors. 1. Synthesis and biological
evaluation of novel (aryloxopropenyl)pyrrolyl hydroxamides. J. Med.
Chem. 2005, 48, 3344-3353.
(43) Mai, A.; Massa, S.; Lavu, S.; Pezzi, R.; Simeoni, S.; Ragno, R.;
Mariotti, F. R.; Chiani, F.; Camilloni, G.; Sinclair, D. A. Design,
Synthesis, and biological evaluation of sirtinol analogues as class
III histone/protein deacetylase (sirtuin) inhibitors. J. Med. Chem.
2005, 48, 7789-7795.
(44) Mai, A.; Massa, S.; Rotili, D.; Pezzi, R.; Bottoni, P.; Scatena, R.;
Meraner, J.; Brosch, G. Exploring the connection unit in the HDAC
inhibitor pharmacophore model: Novel uracil-based hydroxamates.
Bioorg. Med. Chem. Lett. 2005, 15, 4656-4661.
(45) Mai, A.; Massa, S.; Pezzi, R.; Valente, S.; Loidl, P.; Brosch, G.
Synthesis and biological evaluation of 2-, 3-, and 4-acylaminocin-
namyl-N-hydroxyamides as novel synthetic HDAC inhibitors. Med.
Chem. 2005, 1, 245-254.
(46) Mai, A.; Massa, S.; Valente, S.; Simeoni, S.; Ragno, R.; Bottoni, P.;
Scatena, R.; Brosch, G. Aroyl-pyrrolyl hydroxyamides: influence
of pyrrole C4-phenylacetyl substitution on histone deacetylase
inhibition. ChemMedChem 2006, 1, 225-237.
(47) Georgakopoulos, T.; Thireos, G. Two distinct yeast transcriptional
activators require the function of the GCN5 protein to promote normal
levels of transcription. EMBO J. 1992, 11, 4145-4152.
(48) Warrell, R. P., Jr.; Frankel, S. R.; Miller, W. H., Jr.; Scheinberg, D.
A.; Itri, L. M.; Hittelman, W. N.; Vyas, R.; Andreeff, M.; Tafuri,
A.; Jakubowski, A. N. Engl. J. Med. 1991, 324, 1385.
(49) Han, J. W.; Ahn, S. H.; Park, S. H.; Wang, S. Y.; Bae, G. U.; Seo,
D. W.; Known, H. K.; Hong, S.; Lee, Y. W.; Lee, H. W. Apicidin,
a histone deacetylase inhibitor, inhibits proliferation of tumor cells
via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 2000,
60, 6068-6074.
(50) Shute, R. E.; Dunlap, B.; Rich, D. H. Analogues of the cytostatic
and antimitogenic agents chlamydocin and HC-toxin: synthesis and
biological activity of chloromethyl ketone and diazomethyl ketone
functionalized cyclic tetrapeptides. J. Med. Chem. 1987, 30, 71-78.
(51) Diana, G. D.; McKinlay, M. A.; Otto, M. J.; Akullian, V.; Oglesby,
C. [[(4,5-Dihydro-2-oxazolyl)phenoxy]alkyl]isoxazoles. Inhibitors of
picornavirus uncoating. J. Med. Chem. 1985, 28, 1906-1910.
(52) Ornaghi, P.; Rotili, D.; Sbardella, G.; Mai, A.; Filetici, P. A novel
Gcn5p inhibitor represses cell growth, gene transcription and histone
acetylation in budding yeast. Biochem. Pharmacol. 2005, 70, 911-
917.
(54) Ech-Chahad, A.; Minassi, A.; Berton, L.; Appendino, G. An
expeditious hydroxyamidation of carboxylic acids. Tetrahedron Lett.
2005, 46, 5113-5115.
(55) Mori, K.; Koseki, K. Synthesis of trichostatin A, a potent differentia-
tion inducer of Friend leukemic cells, and its antipode. Tetrahedron
1988, 44, 6013-6020.
(56) Nyoung Kim, J.; Mi Chung, Y.; Jin Im, Y. Synthesis of quinolines
from the Baylis-Hillman acetates via the oxidative cyclization of
sulfonamidyl radical as the key step. Tetrahedron Lett. 2002, 43,
6209-6211.
(57) Ma, Z.; Hano, Y.; Nomura, T.; Chen, Y. Novel quinazoline-quinoline
alkaloids with cytotoxic and DNA topoisomerase II inhibitory
activities. Bioorg. Med. Chem. Lett. 2004, 14, 1193-1196.
(58) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. Lewis acid-catalyzed
benzannulation via unprecedented [4 + 2] cycloaddition of o-alkynyl-
(oxo)benzenes and enynals with alkynes. J. Am. Chem. Soc. 2003,
125, 10921-10925.
(59) Howe, L. A.; Auston, D.; Grant, P.; John, S.; Cook, R. G.; Workman,
J. L.; Pillus, L. Histone H3 specific acetyltransferases are essential
for cell cycle progression. Genes DeV. 2001, 15, 3144-3154.
(60) Kuo, M.-H.; Zhou, J.; Jambeck, P.; Churcill, M. E. A.; Allis, C. D.
Histone acetyltransferase activity of yeast Gcn5p is required for the
activation of target genes in vivo. Genes DeV. 1998, 12, 627-639.
(61) Tanner, K. G.; Trievel, L. C.; Kuo, M.-H.; Howard, R. M.; Berger,
S. L.; Allis, C. D.; Marmorstein, R.; Denu, J. M. Catalytic mechanism
and function of invariant glutamic acid 173 from the histone
acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem.
1999, 274, 18157-18160.
(62) Roberts, S. M.; Winston, F. SPT20/ADA5 encodes a novel protein
functionally related to the TATA-binding protein and important for
transcription in Saccharomyces cereVisiae. Mol. Cell. Biol. 1996, 16,
3206-3213.
(63) Sterner, D. E.; Grant, P. A.; Roberts, S. M.; Duggan, L. J.;
Belotserkovskaya, R.; Pacella, L. A.; Winston, F.; Workman, J. L.;
Berger, S. L. Functional organization of the yeast SAGA complex:
distinct components involved in structural integrity, nucleosome
acetylation, and TATA-binding protein interaction. Mol. Cell. Biol.
1999, 19, 86-98.
(64) Kang, J.; Chen, J.; Shi, Y.; Jia, J.; Zhang, Y. Curcumin-induced
histone hypoacetylation: The role of reactive oxygen species.
Biochem. Pharmacol. 2005, 69, 1205-1213.
(65) Marcu, M. G.; Jung, Y.-J.; Lee, S.; Chung, E.-J.; Lee, M.-J.; Trepel,
J.; Neckers, L. Curcumin is an inhibitor of p300 histone acetyltrans-
ferase. Med. Chem. 2006, 2, 169-174.
(66) Richon, V. M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.;
Rifkind, R. A.; Marks, P. A. A class of hybrid polar inducers of
transformed cell differentiation inhibits histone deacetylases. Proc.
Natl. Acad. Sci. U.S.A. 1998, 95, 3003-3007.
(67) Mai, A.; Esposito, M.; Sbardella, G.; Massa, S. A new facile and
expeditious synthesis of N-hydroxy-N′-phenyloctanediamide, a potent
inducer of terminal cytodifferentiation. Org. Prep. Proced. Int. 2001,
33, 391-394.
(68) Wach, A.; Brachat, A.; Pohlmann, R.; Philippsen, P. New heterolo-
gous modules for classical or PCR based gene disruptions in
Saccharomyces cereVisiae. Yeast 1994, 10, 1793-1808.
(69) Guarente, L.; Yocum, R. R.; Gifford, P. A GAL10-CYC1 hybrid
yeast promoter identifies the GAL4 regulatory region as an upstream
site. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 7410-7414.
(70) Bradford, M. M. A dye binding assay for protein. Anal. Biochem.
1976, 72, 248-254.
(71) Valenzuela, L.; Ballario, P.; Aranda, C.; Filetici, P.; Gonza´lez, A.
Regulation of expression of GLT1, the gene encoding glutamate
synthase in Saccharomyces cereVisiae. J. Bacteriol. 1998, 180, 3533-
3540.
(72) Kushnirov, V. V. Rapid and reliable protein extraction from yeast.
Yeast 2000, 16, 857-860.
(73) Altucci, L.; Rossin, A.; Raffelsberger, W.; Reitmair, A.; Chomienne,
C.; Gronemeyer, H. Retinoic acid-induced apoptosis in leukemia cells
is mediated by paracrine action of tumor-selective death ligand
TRAIL. Nat. Med. 2001, 7, 680-686.
(74) Nebbioso, A.; Clarke, N.; Voltz, E.; Germain, E.; Ambrosino, C.;
Bontempo, P.; Alvarez, R.; Schiavone, E. M.; Ferrara, F.; Bresciani,
F.; Weisz, A.; de Lera, A. R.; Gronemeyer, H.; Altucci, L. Tumor-
selective action of HDAC inhibitors involves TRAIL induction in
acute myeloid leukemia cells. Nat. Med. 2005, 11, 77-84.
(53) Ladner, D. W. Oxidation of methylquinolines with nickel peroxide.
Synth. Commun. 1986, 16, 157-162.
JM060601M