5966 Organometallics, Vol. 25, No. 25, 2006
Notes
Scheme 1. Cationic and Zwitterionic K2-P,N Rh(I) and Ir(I)
differing from that of the uncatalyzed reaction, Rh and Ir
complexes have emerged as the most effective catalysts for the
addition of HBcat or HBpin to vinylarenes.15,17 Nevertheless,
achieving high levels of selectivity in such metal-catalyzed
hydroboration reactions can still represent a significant chal-
lenge; in addition to the typical linear and less common branched
hydroboration B-H addition products, borylated olefins and
hydrogenated products are also observed frequently in such
metal-catalyzed transformations. In the context of comparing
and contrasting the catalytic abilities of our cationic (2a,b) and
formally zwitterionic (3a,b) group 9 catalyst complexes, we
viewed vinylarene hydroboration as representing an appealing
prototype for metal-mediated E-H bond additions in which
product selectivity can be difficult to achieve.15,17,18
Our initial catalytic studies (room temperature, THF-d8, 2 mol
% catalyst) examined the hydroboration of monosubstituted
vinylarenes (4-vinylanisole and 4-fluorostyrene) with either
HBcat or HBpin, catalyzed by 2a,b or 3a,b. Catalytic reactions
were monitored by use of multinuclear magnetic resonance
techniques, which allowed for the identification of numerous
boron-containing species,6f including linear and branched hy-
droboration products and mono- and diborated species derived
from dehydrogenative borylation reaction pathways,19 as well
as the corresponding substituted ethylbenzene arising from the
hydrogenation of the vinylarene substrate. In turning our
Complexes Derived from 1a
and formally zwitterionic species, including 3a,b (Scheme 1).11
Whereas 2a,b can be compared with other more traditional
group 9 [(COD)M(κ2-P,N)]+X- salts, the zwitterions 3a,b
constitute an unusual class of substituted indenyl-metal com-
plexes,12 which are comprised of a formally cationic [(COD)M]+
fragment counterbalanced by an uncoordinated 10-π-electron
indenide unit that is incorporated into the backbone of the
κ2-P,N ancillary ligand framework. Preliminary reactivity studies
revealed the catalytic utility of 2a and 3a in alkene hydrosilyl-
ation reactions, and of 2b and 3b for alkene hydrogenation.11c,d
In an effort to assess further the ability of these Rh and Ir
complexes to mediate the addition of E-H and E-E bonds to
unsaturated substrates, we turned our attention to the hydro-
boration and diboration of alkenes. Herein we report on the
results of this catalytic survey and related reactivity studies,
which suggest that 2a,b and 3a,b can be viewed as a
complementary family of catalyst complexes for vinylarene
hydroboration, especially when pinacolborane is employed
(HBpin; pin ) 1,2-O2C2Me4). Notably, the successful applica-
tion of 3b in this context represents the first reported hydro-
boration reaction mediated by a formally zwitterionic Ir
complex.
(17) For selected studies, see: (a) Alexakis, A.; Polet, D.; Bournaud,
C.; Bonin, M.; Micouin, L. Tetrahedron: Asymmetry 2005, 16, 3672. (b)
Carroll, A.-M.; O’Sullivan, T. P.; Guiry, P. J. AdV. Synth. Catal. 2005,
347, 609. (c) Connolly, D. L.; Lacey, P. M.; McCarthy, M.; Saunders, C.
P.; Carroll, A.-M.; Goddard, R.; Guiry, P. J. J. Org. Chem. 2004, 69, 6572.
(d) Daura-Oller, E.; Segarra, A. M.; Poblet, J. M.; Claver, C.; Ferna´ndez,
E.; Bo, C. J. Org. Chem. 2004, 69, 2669. (e) Crudden, C. M.; Hleba, Y.
B.; Chen, A. C. J. Am. Chem. Soc. 2004, 126, 9200. (f) Yamamoto, Y.;
Fujikawa, R.; Umemoto, T.; Miyaura, N. Tetrahedron 2004, 60, 10695.
(g) Gladiali, S.; Loriga, G.; Medici, S.; Taras, R. J. Mol. Catal. A 2003,
196, 27. (h) Kloetzing, R. J.; Lotz, M.; Knochel, P. Tetrahedron: Asymmetry
2003, 14, 255. (i) Chelucci, G.; Orru`, G.; Pinna, G. A. Tetrahedron 2003,
59, 9471. (j) Borriello, C.; Cucciolito, M. E.; Panunzi, A.; Ruffo, F. Inorg.
Chim. Acta 2003, 353, 238. (k) Korostylev, A.; Gridnev, I.; Brown, J. M.
J. Organomet. Chem. 2003, 680, 329. (l) Kwong, F. Y.; Yang, Q.; Mak, T.
C. W.; Chan, A. S. C.; Chan, K. S. J. Org. Chem. 2002, 67, 2769. (m)
Guiry, P. J.; McCarthy, M.; Lacey, P. M.; Saunders, C. P.; Kelly, S.;
Connolly, D. J. Curr. Org. Chem. 2000, 4, 821. (n) Hayashi, T.; Matsumoto,
Y.; Ito, Y. Tetrahedron: Asymmetry 1991, 2, 601. (o) Westcott, S. A.; Taylor,
N. J.; Marder, T. B.; Baker, R. T.; Jones, N. J.; Calabrese, J. C. J. Chem.
Soc., Chem. Commun. 1991, 304. (p) Burgess, K.; van der Donk, W. A.;
Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. J. Am. Chem.
Soc. 1992, 114, 9350. (q) References 6c,f and 9b.
(18) (a) Segarra, A. M.; Guerrero, R.; Claver, C.; Ferna´ndez, E. Chem.
Eur. J. 2003, 9, 191. (b) Blume, F.; Zemolka, S.; Fey, T.; Kranich, R.;
Schmalz, H.-G. AdV. Synth. Catal. 2002, 344, 868. (c) Maeda, K.; Brown,
J. M. Chem. Commun. 2002, 311. (d) McCarthy, M.; Hooper, M. W.; Guiry,
P. J. Chem. Commun. 2000, 1333. (e) McCarthy, M.; Guiry, P. J. Polyhedron
2000, 19, 541. (f) Son, S. U.; Jang, H.-Y.; Han, J. W.; Lee, I. S.; Chung,
Y. K. Tetrahedron: Asymmetry 1999, 10, 347. (g) Doucet, H.; Ferna´ndez,
E.; Layzell, T. P.; Brown, J. M. Chem. Eur. J. 1999, 5, 1320. (h) Schnyder,
A.; Togni, A.; Wiesli, U. Organometallics 1997, 16, 255. (i) Knight, F. I.;
Brown, J. M.; Lazzari, D.; Ricci, A.; Blacker, A. J. Tetrahedron 1997, 53,
11411. (j) Brown, J. M.; Hulmes, D. I.; Layzell, T. P. J. Chem. Soc., Chem.
Commun. 1993, 1673.
(19) (a) Marciniec, B.; Jankowska, M.; Pietraszuk, C. Chem. Commun.
2005, 663. (b) Morrill, C.; Funk, T. W.; Grubbs, R. H. Tetrahedron Lett.
2004, 45, 7733. (c) Coapes, R. B.; Souza, F. E. S.; Thomas, R. L.; Hall, J.
J.; Marder, T. B. Chem. Commun. 2003, 614. (d) Murata, M.; Kawakita,
K.; Asana, T.; Watanabe, S.; Masuda, Y. Bull. Chem. Soc. Jpn. 2002, 75,
825. (e) Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke,
J. M.; Howard, J. A. K.; Marder, T. B. J. Organomet. Chem. 2002, 652,
77. (f) Vogels, C. M.; Hayes, P. G.; Shaver, M. P.; Westcott, S. A. Chem.
Commun. 2000, 51. (g) Murata, M.; Watanabe, S.; Masuda, Y. Tetrahedron
Lett. 1999, 40, 2585. (h) Motry, D. H.; Brazil, A. G.; Smith, M. R. III. J.
Am. Chem. Soc. 1997, 119, 2743. (i) Baker, R. T.; Nguyen, P.; Marder, T.
B.; Westcott, S. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1336. (j) Brown,
J. M.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 1994, 116, 866. (k) Westcott,
S. A.; Marder, T. B.; Baker, R. T. Organometallics 1993, 12, 975. (l) Brown,
J. M.; Lloyd-Jones, G. C. J. Chem. Soc., Chem. Commun. 1992, 710.
Results and Discussion
The addition of B-H bonds to unsaturated organic molecules
represents an important synthetic methodology in organic
chemistry.13 While BH3 adds rapidly to alkenes at -80 °C,
alternative hydroborating agents such as catecholborane (HBcat;
cat ) 1,2-O2C6H4) and HBpin are slow to react, even at elevated
temperatures.14 However, the reluctance of these (RO)2BH
reagents to add to alkenes can allow for hydroborations to be
carried out under the control of a catalyst.15 Following a report
by Ma¨nnig and No¨th,16 who demonstrated that Rh complexes
could be used to catalyze the hydroboration of alkenes with
HBcat under mild conditions and in some cases with selectivity
(11) (a) Wile, B. M.; Burford, R. J.; McDonald, R.; Ferguson, M. J.;
Stradiotto, M. Organometallics 2006, 25, 1028. (b) Rankin, M. A.;
McDonald, R.; Ferguson, M. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2005,
44, 3603. (c) Cipot, J.; McDonald, R.; Stradiotto, M. Chem. Commun. 2005,
4932. (d) Stradiotto, M.; Cipot, J.; McDonald, R. J. Am. Chem. Soc. 2003,
125, 5618.
(12) (a) Bradley, C. A.; Lobkovsky, E.; Keresztes, I.; Chirik, P. J. J.
Am. Chem. Soc. 2005, 127, 10291. (b) Zargarian, D. Coord. Chem. ReV.
2002, 233-234, 157. (c) Stradiotto, M.; McGlinchey, M. J. Coord. Chem.
ReV. 2001, 219-221, 311. (d) Lobanova, I. A.; Zdanovich, V. I. Russ. Chem.
ReV. 1988, 57, 967. (e) Birmingham, J. M. AdV. Organomet. Chem. 1964,
2, 365.
(13) (a) Brown, H. C. Hydroborations; Wiley-Interscience: New York,
1962. (b) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic
Press: New York, 1988.
(14) (a) Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992,
57, 3482. (b) Lane, C F.; Kabalka, G. W. Tetrahedron 1976, 32, 981.
(15) For selected reviews, see: (a) Vogels, C. M.; Westcott, S. A. Curr.
Org. Chem. 2005, 9, 687. (b) Crudden, C. M.; Edwards, D. Eur. J. Org.
Chem. 2003, 4695. (c) Brown, J. M. In Modern Rhodium Catalyzed Organic
Reactions; Evans, P. A. Ed.; Wiley-VCH: Weinheim, Germany, 2004. (d)
Fu, C.; Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-
VCH: Weinheim, Germany, 1998. (e) Burgess, K.; Ohlmeyer, M. J. Chem.
ReV. 1991, 91, 1179. (f) Reference 1f.
(16) Ma¨nnig, D. No¨th, H. Angew. Chem., Int. Ed. Engl. 1985, 24, 878.