R. F. Clark et al. / Bioorg. Med. Chem. Lett. 16 (2006) 6078–6081
6081
appear to be mitigated by incorporation of more flexi-
ble, hydrophobic side chains that compensate for the rel-
ative rigidity and polarity of these linkers (7s vs 7t).
References and notes
1. Unger, R. H. Endochrinology 2005, 144, 5159.
2. Lazar, M. A. Science 2005, 307, 373.
3. Hulver, M. W.; Berggren, J. R.; Cortright, R. N.; Dudek,
R. W.; Thompson, R. P.; Pories, W. J.; MacDonald, K.
G.; Cline, G. W.; Shulman, G. I.; Dohm, G. L.; Houmard,
J. A. Am. J. Physiol. Endocrinol. Metab. 2003, 284,
E741.
Regioisomeric preferences were also studied. In terms of
overall activity, positions 3 and 4 on the phenyl ring
were found to be preferred points of attachment for dis-
tal binding substituents. C-2 alkoxy ethers were uni-
formly less favored (6g–6i), particularly when larger,
sterically demanding groups were introduced (6i vs 2
and 7w). Generally, C-3 adducts displayed similar
ACC2 potency, enhanced ACC1 activity, and conse-
quently, reduced ACC2 selectivity in comparison to cor-
responding C-4 derivatives (2 vs 7w, 7d vs 7y, 7f vs 7x,
and 7o vs 7z). Despite the inherent lack of selectivity
for position 3 analogs, it is interesting that replacement
of the C-3 methoxy group in 7v with the similarly com-
pact yet more hydrophobic trifluoromethoxy variant
(6f) resulted in reasonably potent and selective ACC2
inhibition. These findings are consistent with trends ob-
served for C-4 substitution and reveal a general require-
ment for sterically compact hydrophobic substituents,
regardless of regiochemistry.
4. Friedman, J. Nature 2002, 415, 268.
5. Arner, P. Diabetes Metab. Res. Rev. 2002, 18, S5.
6. Harwood, H. J., Jr. Curr. Opin. Invest. Drugs 2004, 5,
283.
7. Harwood, H. J., Jr. Expert Opin. Ther. Targets 2005, 9,
267.
8. Tong, L. Cell. Mol. Life Sci. 2005, 62, 1784.
9. Burn, P.; Shi, Y. Nat. Rev. Drug Discov. 2004, 3, 695.
10. Abu-Elheiga, L.; Almarza-Ortega, D. B.; Baldini, A.;
Wakil, S. J. J. Biol. Chem. 1997, 272, 10669.
11. Munday, M. R. Biochem. Soc. Trans. 2002, 30, 1059.
12. Harwood, H. J., Jr.; Petras, S. P.; Shelly, L. D.; Zaccaro,
L. M.; Perry, D. A.; Makowski, M. R.; Hargrove, D. M.;
Martin, K. A.; Tracey, W. R.; Chapman, J. G.; Magee, W.
P.; Dalvie, D. K.; Soliman, V. F.; Martin, W. H.;
Mularski, C. J.; Eisenbeis, S. A. J. Biol. Chem. 2003,
278, 37099.
13. Treadway, J. L.; McPherson, R. K.; Petras, S. F.; Shelly,
L. D.; Frederick, K. S.; Sagawa, K.; Perry, D. A.;
Harwood, H. J., Jr. 64th Annual Meeting and Scientific
Sessions of the American Diabetic Association, Orlando,
FL, June 4–8, 2004.
14. Abu-Elheiga, L.; Matzuk, M. M.; Abo-Hashema, K. A.
H.; Wakil, S. J. Science 2001, 291, 2613.
15. Abu-Elheiga, L.; Oh, W.; Kordari, P.; Wakil, S. J. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 10207.
Finally, given the favorable ACC2 activity exhibited by
monoalkoxy groups tethered to either the C-3 or C-4
position of the phenyl ring, we also preliminarily inves-
tigated whether further potency improvements might be
gained by installing additional alkyl ether groups at
these positions. Compared to methoxy derivatives 7a
and 7v, 3,4- and 3,5-dimethoxy ethers 9a and 9b21 dis-
played greatly reduced activity indicating that multiple
distal alkoxy ring substituents have detrimental rather
than additive effects.
16. Oh, W.; Abu-Elheiga, L.; Kordari, P.; Gu, Z.; Shaikenov,
T.; Chirala, S. S.; Wakil, S. J. Proc. Natl. Acad. Sci.
U.S.A. 2005, 102, 1384.
17. Abu-Elheiga, L.; Matzuk, M. M.; Kordari, P.; Oh, W.;
Shaikenov, T.; Gu, Z.; Wakil, S. J. Proc. Natl. Acad. Sci.
U.S.A. 2005, 102, 12011.
18. Gu, Y. G.; Weitzberg, M.; Clark, R. F.; Xu, X.; Li, Q.;
Zhang, T.; Hansen, T. M.; Liu, G.; Xin, Z.; Wang, X.;
Wang, R.; McNally, T.; Camp, H.; Beutel, B. A.; Sham,
H. L. J. Med. Chem. 2006, 49, 3770.
In summary, we have investigated the tolerance for varia-
tion of the isopropyl ether moiety in recently discovered
lead compound 2. SAR requirements for potent, selective
ACC2 inhibition were established. By tuning the size, nat-
ure, and regiochemistry of distal binding elements, excep-
tional levels of potency and selectivity were realized
within the structural series. Sterically compact alkoxy
substituents tethered to the C-4 position of the phenyl ring
provided the most selective ACC2 activity (>800-fold)
while larger, more flexible hydrophobic ethers produced
superior, though non-selective ACC2 potency
(IC50s ꢀ 4–5 nM). Although no modification in our study
resulted in a better overall profile than parent compound
2, the insights gained from this work will facilitate future
optimization efforts in other domains ofthe lead template.
19. Final compounds were isolated using either flash chroma-
tography on silica gel or reverse-phase HPLC on a Waters
Sunfire C18 column with a gradient of 5–95% acetonitrile:
0.1% aqueous trifluoroacetic acid. All analogs were in full
1
agreement with proposed structures by H NMR, HPLC,
and MS (>95% purity).
20. Gardner, J. N. Can. J. Chem. 1973, 51, 1416.
21. Compounds 9a and 9b were synthesized from commer-
cially available 3,4- and 3,5-dimethoxy phenols according
to reaction sequences described in Scheme 1.