S. Sevilla et al. / Tetrahedron Letters 47 (2006) 8603–8606
Table 2. Relevant NMR data (ppm)a of diamines 5 and sulfonylureas 1
8605
R1
R1
N
N
N
N
NH
R2
R2
N
O
S
N
H
O
H6
H5
NH2
5
1
Compound H-5 C-5
NCH2 NCH2 Compound H-6 C-6
NCH2 NCH2 DH5–H6 DC5–C6 DCH
DCH
2ð4Þ–CH2ð5Þ
2ð4Þ–CH2ð5Þ
5a
5b
5c
5d
7.88 126.5 3.67
41.2
41.2
40.8
45.3
1a
1b
1c
1d
7.33 113.4 4.12
7.20 110 4.1
7.38 112.3 4.15
7.28 111.2 3.89
4.05
40.8
40.9
40.9
45.5
0.55
0.61
0.44
0.59
13.1
15.7
13.6
15.0
ꢀ0.45
0.4
7.81 125.7 3.67
7.82 125.9 3.71
7.87 126.2 3.43
3.86
7.71 124.3 3.40
3.88
7.92 126.4 3.41
3.88
7.79 125.3 4.63
7.71 124.2 4.62
7.82 126.5 4.55
ꢀ0.43
ꢀ0.44
ꢀ0.46
ꢀ0.19
ꢀ0.48
ꢀ0.16
ꢀ0.51
ꢀ0.18
ꢀ0.36
ꢀ0.36
ꢀ0.38
0.3
ꢀ0.1
ꢀ0.2
5e
5f
46.2
46.2
1e
1f
7.18 110
3.88
4.04
45.5
45.1
0.53
0.48
14.3
11.9
ꢀ0.5
7.44 114.5 3.92
4.06
7.34 113.0 4.9
7.19 111.6 4.9
7.38 114.8 5.00
1.1
5g
5h
5i
45.1
45.0
43.9
1g
1h
1i
44.2
44.1
44.2
0.45
0.52
0.44
12.3
12.6
11.7
0.9
0.9
ꢀ0.3
a 1H NMR spectroscopy was performed in CDCl3 with a few drops of added CD3OD (except 5a,b,d–f where only CDCl3 was used).
1
Pirson, W.; Stalder, H. J. Med. Chem. 2001, 44, 1847–
1852; (e) Taveras, A. G.; Deskus, J.; Chao, J.; Vaccaro, C.
J.; Njoroge, F. G.; Vibulbhan, B.; Pinto, P.; Remiszewski,
S.; del Rosario, J.; Doll, R. J.; Alvarez, C.; Lalwani, T.;
Mallams, A. K.; Rossman, R. R.; Alfonso, A.; Girijaval-
labhan, V. M.; Ganguly, A. K.; Pramanik, B.; Heimark,
L.; Bishop, W. R.; Wang, L.; Kirschmeier, P.; James, L.;
Carr, D.; Patton, R.; Bryant, M. S.; Nomeir, A. A.; Liu,
M. J. Med. Chem. 1999, 42, 2651–2661; (f) Tozer, M. J.;
Buck, I. M.; Cooke, T.; Kalinjian, S. B.; McDonald, I. M.;
Pether, M. J.; Steel, K. I. Biorg. Med. Chem. Lett. 1999, 9,
3103–3108; (g) Maryanoff, B. E.; Costanzo, M. J.; Nortey,
S. O.; Greco, M. N.; Shank, R. P.; Schupsky, J. J.;
Ortegon, M. P.; Vaught, J. L. J. Med. Chem. 1998, 41,
1315–1343.
(0.4–0.5 ppm) of H6 in the H spectra of 1 as compared
to compound 5. The same effect can be seen in the 13C
NMR spectra for C6 of compounds 1 and C5 of com-
pounds 5; in this case the upfield shifts range from 11
to 16 ppm.
It can be concluded that a simple microwave-assisted
methodology to obtain heterocyclic sulfonylureas has
been developed. The method is rapid, high-yielding
and involves the use of the inexpensive reagent sulf-
amide. Of particular note is that poor nucleophilic
amines react well. Studies involving the application of
the methodology to other heterocyclic diamines are
currently underway in our laboratories.
3. (a) Stetter, H.; Merten, R. Chem. Ber. 1957, 90, 868–874;
(b) McManus, J. M.; McFarland, J. W.; Gerber, C. F.;
McLamore, W. M.; Laubach, G. D. J. Med. Chem. 1965,
8, 766–776; (c) Jadhav, P. K.; Woerner, F. J. Tetrahedron
Lett. 1995, 36, 6383–6386.
Acknowledgements
4. (a) Abou-Gharbia, M.; Moyer, J. A.; Patel, U.; Webb, M.;
Schiehser, G.; Andree, T.; Haskins, T. J. Med. Chem.
1989, 32, 1024–1033; (b) Rosenberg, S. H.; Dellaria, J. F.;
Kempf, D. J.; Hutchins, C. W.; Woods, K. W.; Maki, R.
G.; de Lara, E.; Spina, K. P.; Stein, H. H.; Cohen, J.;
Baker, W. R.; Plattner, J. J.; Kleinert, H. D.; Perum, T. J.
J. Med. Chem. 1990, 33, 1582–1590.
This work was supported by Almirall Prodesfarma
and the Barcelona Science Park. The authors thank
Dr. Victor Matassa and Dr. Hamish Ryder for their
encouragement.
References and notes
5. Kim, I.-W.; Jung, S.-H. Arch. Pharm. Res. 2002, 25, 421–
427.
6. Montero, J.-L.; Dewynter, G.; Agoh, B.; Delauny, B.
Tetrahedron Lett. 1983, 24, 3091–3094.
1. Patani, G. A.; LaVoie, E. J. J. Chem. Rev. 1996, 96, 3147–
3176.
7. Beaudoin, S.; Kinsey, K. E.; Burns, J. F. J. Org. Chem.
2003, 68, 115–119.
2. (a) Ax, A.; Schaal, W.; Vrang, L.; Samuelsson, B.;
´
Hallberg, A.; Karlen, A. Bioorg. Med. Chem. 2005, 13,
8. Wheeler, K. W.; Degering, E. D. J. Am. Chem. Soc. 1944,
66, 1242–1243.
9. (a) Kloeck, J. A.; Leschinsky, K. L. J. Org. Chem. 1976,
41, 4028; (b) Ja¨ger, U.; Sundermeyer, W.; Pritzkow, H.
Chem. Ber. 1987, 120, 1191–1195; (c) Ducry, L.; Reinelt,
755–764; (b) Goehring, R. R.; Whitehead, J. F. W.;
Brown, K.; Islam, K.; Wen, X.; Xiaoming, Z.; Chen, Z.;
Valenzano, K. J.; Miller, W. S.; Shan, S.; Kyle, D. J.
Bioorg. Med. Chem. Lett. 2004, 14, 5045–5050; (c)
Giannessi, F.; Chiodi, P.; Marzi, M.; Minetti, P.; Pessoto,
P.; De Angelis, F.; Tassoni, E.; Conti, R.; Giorgi, F.;
Mabilia, M.; Dell’Uomo, N.; Muck, S.; Tinti, M. O.;
Carminati, P.; Arduini, A. J. Med. Chem. 2001, 44, 2383–
2386; (d) Apfel, C.; Banner, D. W.; Bur, D.; Dietz, M.;
Hubschewerlen, C.; Locher, H.; Marlin, F.; Masciadri, R.;
´
S.; Seller, P.; Dietrich, F. Helv. Chim. Acta 1999, 82, 2432–
2447.
10. Baxter, A.; Eyssade, C.; Guile, S.; King, S.; Pimm, A.;
Reuberson, J.; Thorne, P. PCT Int. Appl. (2004), 75pp,
WO 2004074278.