acids.6d,g The hydroxy group in hydroxyphthioceranic acid
is assumed to be D (R), but no direct evidence exists to this
date.
There is a broad interest in the synthesis of 1,3-polymethyl
arrays because of their presence in many natural products
such as fatty acids and lipids, antibiotics, and marine natural
products.9-11 Most of the current synthetic approaches are
based on iterative chiral auxiliary strategies. For compounds
containing multiple methyl groups, such as 1, these ap-
proaches are however laborious and less practical. An
efficient catalytic asymmetric approach is therefore highly
warranted.
Recently, we showed that the asymmetric conjugate
addition of MeMgBr catalyzed by a [4‚CuBr] complex
comprises a very powerful iterative method for the prepara-
tion of deoxypropionates.14,16,17 On the basis of this method,
we prepared mycoceranic acid, a compound related to 1 but
of opposite stereochemistry and containing an array of four
methyl groups.14,15
An alternative method based on an asymmetric zirconium-
catalyzed carboalumination, palladium-catalyzed cross-
coupling has been reported by Negishi and co-workers. This
method was used in the synthesis of a four-methyl-branched
fatty acid from the graylag goose.12 Very recenty, Burgess
and co-workers reported an asymmetric hydrogenation ap-
proach to deoxypropionates starting with building blocks
based on the Roche ester.13
To put the robustness and efficiency of our iterative
catalytic conjugate addition methodology to the test, and as
a prelude to the enantioselective total synthesis of Sulfolipid-
I, we decided to embark on the first synthesis of phthioce-
ranic acid, a heptamethyl-substituted fatty acid from M.
tuberculosis.
Figure 1. Sulfolipid-I (SL-I).
contain one palmitic acid, one phthioceranic acid, and two
hydroxyphthioceranic acid residues.
Phthioceranic (1) and hydroxyphthioceranic acid are hepta-
and octamethyl-branched dextrorotatory deoxypropionates,
respectively, containing a palmitoyl chain and a hydroxy
functionality at C17 for the latter. There is strong evidence
that the stereochemistry at the methyl branches is all-L,4a,7
e.g., all-S for phthioceranic acid and 2S,4S,6S,8S,10R,12R,-
14R,16R for hydroxyphthioceranic acid. The absolute ster-
eochemistry of tetramethyl-substituted laevorotatory myco-
cerosic acid has been determined as all-D (R) by degradation
studies.4a Phthioceranic acids were compared to mycocerosic
acid and all-S dextrorotatory mycolipenic acids (2,4,6-
trimethyl-tetracos-2-enoic acid).4a More recent studies showed
that mycocerosic acid is produced by the enzyme myco-
cerosic acid synthase (MAS), whereas phthioceranic and
hydroxyphthioceranic acid are produced by polyketide syn-
thase, Pks2.3,6g This accounts for the opposite stereochemistry
observed. The biosynthesis of the mycolipenic acids is
genetically closely related to that of the phthioceranic
The synthesis of 1 starts with 314 that was submitted to
an enantioselective 1,4-addition with MeMgBr, catalyzed by
1 mol % of 4‚CuBr in t-BuOMe at -78 °C (Scheme 1).
The corresponding thioester 5 was isolated in an excellent
(9) (a) Williams, D. R.; Nold, A. L.; Mullins, R. J. J. Org. Chem. 2004,
69, 5374-5382. (b) Cooksey, J. P.; Kocienski, P. J.; Li, Y.; Schunk, S.;
Snaddon, T. N. Org. Biomol. Chem. 2006, 4, 3325-3336. (c) Evans, D.
A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc.
1990, 112, 5290-5313. (d) Duffey, M. O.; LeTiran, A.; Morken, J. P. J.
Am. Chem. Soc. 2003, 125, 1458-1459. (e) Nagamitsu, T.; Takano, D.;
Marumoto, K.; Fukuda, T.; Furuya, K.; Otoguro, K.; Takeda, K.; Kuwajima,
I.; Harigaya, Y.; Omura, S. J. Org. Chem. 2007, 72, 2744-2756.
(10) For a recent review on deoxypropionate units, see: Hanessian, S.;
Giroux, S.; Mascitti, V. Synthesis 2006, 7, 1057-1076.
(11) Review: Modern aldol methods for the total synthesis of polyketides.
Schetter, B.; Mahrwald, R. Angew. Chem. Int. Ed. 2006, 45, 7506-7525.
(12) (a) Negishi, E.; Tan, Z.; Liang, B.; Novak, T. Proc. Natl. Acad.
Sci. 2004, 101, 5782-5787. (b) Novak, T.; Tan, Z.; Liang, B.; Negishi, E.
J. Am. Chem. Soc. 2005, 127, 2838-2839. (c) Liang, B.; Novak, T.; Tan,
Z.; Negishi, E. J. Am. Chem. Soc. 2006, 128, 2770-2771.
(13) (a) Zhou, J.; Burgess, K. Angew. Chem., Int. Ed. 2007, 46, 1129-
1131. (b) Zhou, J.; Zhu, Y.; Burgess, K. Org. Lett. 2007, 9, 1391-1393.
(14) ter Horst, B.; Feringa, B. L.; Minnaard, A. J. Chem. Commun. 2007,
489-491.
(15) Cox, J. S.; Chen, B.; McNeil, M.; Jacobs, W. R., Jr. Nature 1999,
402, 79-83.
(16) (a) Schuppan, J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun.
2004, 792-793. (b) Feringa, B. L.; Badorrey, R.; Pen˜a, D.; Harutyunyan,
S. R.; Minnaard, A. J. Proc. Natl. Acad. Sci. 2004, 16, 5834-5838.
(17) (a) Des Mazery, R.; Pullez, M.; Lo´pez, F.; Harutyunyan, S. R.;
Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966-9967.
(b) Lo´pez, F.; Minnaard, A. J.; Feringa, B. L. Acc. Chem. Res. 2007, 40,
179-188.
(6) For the biosynthesis of SL-I, see the following references: (a) Schelle,
M. W.; Bertozzi, C. R. ChemBioChem 2006, 7, 1516-1524. (b) Fernandes,
N. D.; Kolattukudy, P. E. J. Biol. Chem. 1998, 273, 2823-2828. (c)
Converse, S. E.; Mougous, J. D.; Leavell, M. D.; Leary, J. A.; Bertozzi, C.
R.; Cox, J. S. Proc. Natl. Acad. Sci. 2003, 100, 6121-6126. (d) Bhatt, K.;
Gurcha, S. S.; Bhatt, A.; Besra, G. S.; Jacobs, W. R., Jr. Microbiology
2007, 153, 513-520. (e) Mougous, J. D.; Petzold, G. J.; Senaratne, R. H.;
Lee, D. H.; Akey, D. L.; Lin, F. L.; Munchel, S. E.; Pratt, M. R.; Riley, L.
W.; Leary, J. A.; Berger, J. M.; Bertozzi, C. R. Nat. Struct. Mol. Biol. 2004,
11, 721-729. (f) Sirakova, T. D.; Thirumala, A. K.; Dubey, V. S.; Sprecher,
H.; Kolattukudy, P. E. J. Biol. Chem. 2001, 276, 16833-16839. (g) Dubey,
V. S.; Sirakova, T. D.; Kolattukudy, P. E. Mol. Microbiol. 2002, 45, 1451-
1459.
(7) (a) Goren, M. B. Biochim. Biophys. Acta 1970, 210, 116-126. (b)
Goren, M. B. Biochim. Biophys. Acta 1970, 210, 127-138. (c) Goren, M.
B.; Brokl, O.; Das, B. C.; Lederer, E. Biochemistry 1971, 10, 72-81. (d)
Goren, M. B.; Brokl, O.; Roller, P.; Fales, H. M.; Das, B. C. Biochemistry
1976, 15, 2728-2735. (e) D and L symbols are used in the sense defined
by: Lindstead, R. P.; Lunt, J. C.; Weedon, B. C. L. J. Chem. Soc. 1950,
3333-3335.
(8) There is some debate about the position of the acyl groups in SL-I;
see ref 6a.
3014
Org. Lett., Vol. 9, No. 16, 2007