acrylamide from biocatalytic hydration of acrylonitrile.2 Recent
studies have demonstrated that biotransformations of nitriles
complement the existing asymmetric chemical and enzymatic
methods for the synthesis of chiral carboxylic acids and their
derivatives.3,4 The distinct features of enzymatic transformations
of nitriles are the straightforward generation of enantiopure
amides, valuable organonitrogen compounds in synthetic chem-
istry, in addition to the formation of enantiopure carboxylic
acids. For example, we3c have shown that Rhodococcus eryth-
ropolis AJ270,5 a nitrile hydratase/amidase-containing whole
cell catalyst, is able to efficiently and enantioselectively
transform nitriles including R-aminonitriles,6 R-alkyl-7 and
R-allyl-substituted arylacetonitriles,8 cyclopropanecarbonitriles,9
and oxiranecarbonitriles10 into the corresponding useful poly-
functionalized chiral carboxylic acids and amides. In contrast
to the successful enantioselective nitrile biotransformations for
the preparation of chiral carboxylic acids and amide derivatives
bearing an R-stereocenter,3-10 biotransformations of substrates
having a chiral center remote from the cyano or the amido
functional group have been reported to proceed with, in most
cases, disappointingly low enantioselectivity and chemical
yield11-15 except for some biocatalytic desymmtrization reac-
tions of 3-substituted glutoranitrile derivatives.16 For instance,
biotransformations of the Baylis-Hillman nitriles11 and its one-
carbon homologated nitriles12 gave moderate enantioselectivity
whereas â-phenylbutyronitrile,13 â-,14 γ-, or δ-hydroxylated
alkanenitriles15 gave no or extremely low enantiocontrol. It is
generally believed that the movement of a stereocenter from
the reactive site (R-position to functional group) to a remote
place gives rise to the decrease of enantioselectivity in asym-
metric reactions. However, this notion may not be true for
An Unusual â-Vinyl Effect Leading to High
Efficiency and Enantioselectivity of the Amidase,
Nitrile Biotransformations for the Preparation of
Enantiopure 3-Arylpent-4-enoic Acids and
Amides and Their Applications in Synthesis
Ming Gao, De-Xian Wang, Qi-Yu Zheng, and
Mei-Xiang Wang*
Beijing National Laboratory for Molecular Sciences, Laboratory
of Chemical Biology, Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100080, China
ReceiVed August 10, 2006
Biotransformations of 3-arylpent-4-enenitriles catalyzed by
Rhodococcus erythropolis AJ270, a nitrile hydratase/amidase-
containing microbial whole-cell catalyst were studied, and
an unusual â-vinyl effect of the substrate on the biocatalytic
efficiency and enantioselectivity of the amidase was ob-
served. While 3-arylpent-4-enenitriles and 3-phenylpen-
tanenitrile were efficiently hydrated by the action of the less
R-enantioselective nitrile hydratase, the amidase showed
greater activity and higher enantioselectivity against 3-aryl-
pent-4-enoic acid amides than 3-arylpentanoic acid amides.
Under very mild conditions, nitrile biotransformations pro-
vided an efficient synthesis of highly enantiopure (R)-3-
arylpent-4-enoic acids and (S)-3-arylpent-4-enoic acid amides,
and their applications were demonstrated by the synthesis
of chiral γ-amino acid, 2-pyrrolidinone, and 2-azepinone
derivatives.
(3) For reviews, see: (a) Sugai, T.; Yamazaki, T.; Yokoyama, M.; Ohta,
H. Biosci. Biotech. Biochem. 1997, 61, 1419 and references therein. (b)
Martinkova, L.; Kren, V. Biocatal. Biotrans. 2002, 20, 73. (c) Wang, M.-
X. Top. Catal. 2005, 35, 117.
(4) For recent examples, see: (a) DeSantis, G.; Zhu, Z.; Greenberg, W.
A.; Wong, K.; Chaplin, J.; Hanson, S. R.; Farwell, B.; Nicholson, L. W.;
Rand, C. L.; Weiner, D. P.; Robertson, D. E.; Burk, M. J. J. Am. Chem.
Soc. 2002, 124, 9024. (b) Effenberger, F.; Oâwald, S. Tetrahedron:
Asymmetry 2001, 12, 279. (c) Hann, E. C.; Sigmund, A. E.; Fager, S. K.;
Cooling, F. B.; Gavagan, J. E.; Ben-Bassat, A.; Chauhan, S.; Payne, M. S.;
Hennessey, S. M.; DiCosimo, R. AdV. Synth. Catal. 2003, 345, 775. (d)
Preiml, M.; Hillmayer, K.; Klempier, N. Tetrahedron Lett. 2003, 44, 5057.
(e) Yokoyama, M.; Kashiwagi, M.; Iwasaki, M.; Fushuku, K.; Ohta, H.;
Sugai, T. Tetrahedron: Asymmetry 2004, 15, 2817.
(5) (a) Blakey, A. J.; Colby, J.; Williams, E.; O’Reilly, C. FEMS
Microbiol. Lett. 1995, 129, 57. (b) Colby, J.; Snell, D.; Black, G. W.
Monatsh. Chem. 2000, 131, 655. (c) O’Mahony, R.; Doran, J.; Coffey, L.;
Cahill, O. J.; Black, G. W.; O’Reilly, C. Antonie Van Leeuwenhoek 2005,
87, 221.
(6) (a) Wang, M.-X.; Lin, S.-J. J. Org. Chem. 2002, 67, 6542. (b) Wang,
M.-X.; Lin, S.-J.; Liu, J.; Zheng, Q.-Y. AdV. Synth. Catal. 2004, 346, 439.
(7) (a) Wang, M.-X.; Lu, G.; Ji, G.-J.; Huang, Z.-T.; Meth-Cohn, O.;
Colby, J. Tetrahedron: Asymmetry 2000, 11, 1123. (b) Wang, M.-X.; Li,
J.-J., Ji, G.-J.; Li, J.-S. J. Mol. Cat. B: Enzym. 2001, 14, 77.
Biotransformations of nitriles, either through a direct conver-
sion from a nitrile to a carboxylic acid catalyzed by a nitrilase
or through the nitrile hydratase-catalyzed hydration of a nitrile
followed by the amide hydrolysis catalyzed by the amidase, have
become effective and environmentally benign methods for the
production of carboxylic acids and their amide derivatives.1 One
of the well-known examples is the industrial production of
(8) (a) Wang, M.-X.; Zhao, S.-M. Tetrahedron Lett. 2002, 43, 6617. (b)
Wang, M.-X.; Zhao, S.-M. Tetrahedron: Asymmetry 2002, 13, 1695.
(9) (a) Wang, M.-X.; Feng, G.-Q. Tetrahedron Lett. 2000, 41, 6501. (b)
Wang, M.-X.; Feng, G.-Q. New J. Chem. 2002, 1575. (c) Wang, M.-X.;
Feng, G.-Q. J. Org. Chem. 2003, 68, 621-624. (d) Wang, M.-X.; Feng, G.
Q. J. Mol. Catal. B: Enzym. 2002, 18, 267. (e) Wang, M.-X.; Feng, G.-Q.;
Zheng, Q.-Y. AdV. Synth. Catal. 2003, 345, 695; (f) Wang, M.-X.; Feng,
G.-Q.; Zheng, Q.-Y. Tetrahedron: Asymmetry 2004, 15, 347.
(10) (a) Wang, M.-X.; Lin, S.-J.; Liu, C.-S.; Zheng, Q.-Y.; Li, J.-S. J.
Org. Chem. 2003, 68, 4570. (b) Wang, M.-X.; Deng, G.; Wang, D.-X.
Zheng, Q.-Y. J. Org. Chem. 2005, 70, 2439.
* To whom correspondence should be addressed. Tel: +86-10-62565610.
Fax: +86-10-62564723.
(1) (a) Faber, K. Biotransformations in Organic Chemistry, 3rd ed.;
Spring-Verlag: New York, 1997; pp 136-145. (b) Kobayashi, M.; Shimizu,
S. FEMS Microbiol. Lett. 1994, 120, 217 and references therein. (c) Meth-
Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin Trans. 1 1997, 1099. (d)
Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin Trans. 1 1997, 3197
and references therein.
(2) Nagasawa, T.; Schimizu, H.; Yamada, H. Appl. Microbiol. Biotechnol.
1993, 40, 189.
10.1021/jo061664f CCC: $33.50 © 2006 American Chemical Society
Published on Web 11/11/2006
9532
J. Org. Chem. 2006, 71, 9532-9535