point energies calculated. Due to the high symmetry of the energy
surface, the remaining data points could be generated as a mirror
image. Ring-substituent conformational space was explored using
4 For recent reviews, see: (a) T. Welton, Coord. Chem. Rev., 2004, 248,
2459; (b) J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev.,
2002, 102, 3667; (c) R. Sheldon, Chem. Commun., 2001, 2399.
5 For recent reviews, see: (a) W. Leitner, Acc. Chem. Res, 2002, 35, 746;
(b) E. J. Beckman, J. Supercrit. Fluids, 2004, 28, 121.
6 For recent reviews, see: (a) D. E. Bergbreiter, Top. Curr. Chem., 2004,
242, 113; (b) C. Muller, M. G. Nijkamp and D. Vogt, Eur. J. Inorg.
Chem., 2005, 4011; (c) N. End and K. U. Schoning, Top. Curr. Chem.,
2004, 242, 241.
7 A. M. Gillespie, G. R. Morello and D. P. White, Organometallics, 2002,
21, 3913 and references therein.
8 (a) G. Ujaque and F. Maseras, Struct. Bonding, 2004, 112, 117; (b) D.
Balcells, G. Drudis-Sole, M. Besora, N. Dolker, G. Ujaque, F. Maseras
and A. Lledos, Faraday Discuss., 2003, 124, 429.
9 P. M. Todebush, G. Liang and J. P. Owen, Chirality, 2002, 13, 220.
10 (a) N. Fey, A. C. Tsipsis, S. E. Harris, J. N. Harvey, A. G. Orpen and
R. A. Mansson, Chem.–Eur. J., 2006, 12, 291; (b) K. D. Cooney, T. R.
Cundari, N. W. Hoffman, K. A. Pittard, M. D. Temple and Y. Zhao,
J. Am. Chem. Soc., 2003, 125, 4318; (c) H. R. Bjorsvik, U. M. Hansen
and R. Carlson, Acta Chem. Scand., 1997, 51, 733 and references
therein.
11 (a) C. P. Brock and J. A. Ibers, Acta Crystallogr., Sect. B, 1973, 29,
2426; (b) D. C. Levendis and I. Bernal, Struct. Chem., 1997, 8, 263.
12 D. A. Fletcher, R. F. McMeeking and D. Parkin, J. Chem. Inf. Comput.
Sci., 1996, 36, 746.
a script of driver calculations on the torsional angle s = Cring–Cring
–
Calkyl–Calkyl. For both ground and transition states, the selected
torsional angle was driven in 10◦ increments from −180 to +180◦.
−1
The geometry was optimised to a gradient of 0.1 kcal A mol−1
˚
or a maximum of 700 cycles using a large restraint (500 kcal mol−1
degree−2) and after removal of restraints, a single point energy
was calculated. If more than one ring bore substituents, driver
calculations were performed successively on each substituent,
allowing free adjustment of the remaining geometry. Using the
same script, conformational preferences with respect to Cr(CO)5
orientation were explored.
In the case of diarylphosphines, all 1369 possible combinations
of ring torsional angles (−180 to +180◦ on both rings, 10◦ steps)
−1
were generated and optimised to a gradient of 0.1 kcal A mol−1
˚
or a maximum of 1000 cycles, applying a high torsional restraint
(500 kcal mol−1 degree−2). Removal of restraints was followed by
a single point energy calculation. The barrier to rotation of the
alkyl carbon–phosphorus bond was obtained similarly.
13 J. Bruckmann and C. Krueger, J. Organomet. Chem., 1997, 536, 465–
537.
14 K. A. Jensen and P. H. Nielsen, Acta Chem. Scand., 1963, 17, 1875.
15 (a) M. L. Caffery and T. L. Brown, Inorg. Chem., 1991, 30, 3907; (b) K. J.
Lee and T. L. Brown, Inorg. Chem., 1992, 31, 289.
Acknowledgements
16 J. A. S. Howell, P. C. Yates, M. G. Palin, P. McArdle, D. Cunningham,
Z. Goldschmidt, H. E. Gottlieb and D. Hezroni-Langerman, J. Chem.
Soc., Dalton Trans., 1993, 2775.
17 (a) A. G. Hopfinger and R. A. Pearlstein, J. Comput. Chem., 1984, 5,
486; (b) P. Ugliengo, J. Ahmed, D. Viterbo and M. Ceruti, Gazz. Chim.
Ital., 1989, 119, 493.
18 HyperChem 5.11, Hypercube Inc., Gainesville, FL, 2002.
19 2-MeC6H4 series: (a) J. A. S. Howell, M. G. Palin, P. C. Yates,
P. McArdle, D. Cunningham, Z. Goldschmidt, H. E. Gottlieb and
D. Hezroni-Langerman, J. Chem. Soc., Perkin Trans. 2, 1992, 1769;
(b) T. S. Cameron and B. Dahlen, J. Chem. Soc., Perkin Trans. 2, 1975,
1737.
20 2-CF3C6H4 series: J. A. S. Howell, N. Fey, J. D. Lovatt, P. C. Yates, P.
McArdle, D. Cunningham, E. Sadeh, H. E. Gottlieb, Z. Goldschmidt,
M. B. Hursthouse and M. E. Light, J. Chem. Soc., Dalton Trans., 1999,
3015.
We wish to acknowledge the use of the EPSRC’s Chemical
Database Service at Daresbury.13 One of us (N.F.) also wishes
to acknowledge financial support from Keele University and
the Society for Chemical Industry for the award of a Messel
Scholarship.
References
1 For recent reviews of specific areas of catalysed asymmetric synthesis,
see: (a) F. Speiser, P. Braunstein and W. Saussine, Acc. Chem. Res.,
2005, 38, 784; (b) X. H. Cui and K. Burgess, Chem. Rev., 2005, 105,
3272; (c) S. Castillon, C. Claver and Y. Diaz, Chem. Soc. Rev., 2005,
34, 702; (d) A. M. Carroll, T. P. O’Sullivan and P. J. Guiry, Adv. Synth.
Catal., 2005, 347, 609; (e) R. C. J. Atkinson, V. C. Gibson and N. J.
Long, Chem. Soc. Rev., 2004, 33, 313; (f) T. P. Clark and C. R. Landis,
Tetrahedron: Asymmetry, 2004, 15, 2123; (g) K. V. L. Crepy and T.
Imamoto, Top. Curr. Chem., 2003, 229, 1.
2 For recent reviews, see: (a) D. Sinou, Adv. Synth. Catal., 2002, 344,
221; (b) N. Pinault and D. W. Bruce, Coord. Chem. Rev., 2003, 241, 1;
(c) K. H. Shaughnessy and R. B. De Vasher, Curr. Org. Chem., 2005,
9, 585; (d) A. D. Phillips, L. Gonsalvi, A. Rornerosa, F. Vizza and M.
Perruzzini, Coord. Chem. Rev., 2004, 248, 955.
21 (a) K. Mislow, Chemtracts: Org. Chem., 1989, 2, 151; (b) K. Mislow, D.
Gust, R. J. Finocchiaro and R. J. Boettcher, Top. Curr. Chem., 1974,
47, 1.
22 See references 23, 24 in reference 20.
23 I. O. Sutherland, Annu. Rep. NMR Spectrosc., 1971, 4, 80.
24 For an alternative synthesis, see: G. M. Whitesides, M. Eisenhut and
W. M. Bunting, J. Am. Chem. Soc., 1974, 96, 5368.
˚
25 B. Akermark and A. Ljungqvist, J. Organomet. Chem., 1978, 149, 97.
3 For recent reviews, see: (a) A. P. Dobbs and M. R. Kimberley, J. Fluorine
Chem., 2002, 118, 3; (b) G. Pozzi and I. Shepperson, Coord. Chem. Rev.,
2003, 242, 115.
26 G. M. Sheldrick, SHELXS-97, Acta Crystallogr., Sect. A, 1990, 46, 467.
27 G. M. Sheldrick, SHELXL97, University of Go¨ttingen, Germany,
1997.
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 5464–5475 | 5475
©