Wiley-VCH, Weinheim, 2005, pp. 379; (c) P. Mu¨ller and C. Fruit, Chem.
Rev., 2003, 103, 2905; (d) P. Dauban and R. H. Dodd, Synlett, 2003,
1571.
Table 2 Comparative data for C–H amination mediated by CLX-
based Rh2 complexesa
2 C. G. Espino, K. W. Fiori, M. Kim and J. Du Bois, J. Am. Chem. Soc.,
2004, 126, 15378.
3 M. Kim, J. V. Mulcahy, C. G. Espino and J. Du Bois, Org. Lett., 2006,
8, 1073.
4 The enhanced stability exhibited by this catalyst is likely due to the
chelate effect provided by the tethered cis-dicarboxylate design, see: (a)
J. Bickley, R. Bonar-Law, T. McGrath, N. Singh and A. Steiner,
New J. Chem., 2004, 28, 425. See also: (b) H. M. L. Davies and
C. Venkataramani, Org. Lett., 2003, 5, 1403; (c) D. F. Taber,
R. P. Meagley, J. P. Louey and A. L. Rheingold, Inorg. Chim. Acta,
1995, 239, 25.
Conversion Yield
[%]
Entry Catalyst
Substrate [%]
1
2
3
Rh(CLX-H2)(OAc)2
Rh(CLX-H2)(OAc)(O2CCF3)
Rh(CLX-H2)(OAc)2
A
A
B
B
B
C
C
C
C
C
C
100
,10
90
,10
95
65
80
65
20
10
100
93
—
81
—
88
58
69
—
—
—
90
5 C. D. Gutsche, Calixarenes Revisited, The Royal Society of Chemistry,
Cambridge, 1998.
4
5
6
Rh(CLX-H2)(OAc)(O2CCF3)
Rh(CLX-H2)(OAc)(O2CCPh3)
Rh(CLX-H2)(OAc)2
6 S. Steyer, C. Jeunesse, D. Armspach, D. Matt and J. Harrowfield, in
Calixarenes 2001, ed. Z. Asfari, V. Bohmer, J. Harrowfield and J. Vicens,
Kluwer Academic Publishers, Dordrecht, 2001, pp. 513.
7 For examples of calix[4]arene-based ligands for dirhodium complexes,
see: (a) J. Seitz and G. Maas, Chem. Commun., 2002, 338; (b)
F. A. Cotton, P. Lei, C. Lin, C. A. Murillo, X. Wang, S.-Y. Yu and
Z.-X. Zhang, J. Am. Chem. Soc., 2004, 126, 1518.
7
8
Rh(CLX-H2)(OAc)(O2CCPh3)
Rh(CLX-H2)(OAc)(O2CAd)b
9
Rh2(O2CC7H15)4
Rh2(O2CCPh3)4
Rh2(esp)2
10
11
a
c
Reactions performed with 1.1 equiv of PhI(OAc)2 and 2.3 equiv of
MgO at 0.15 M [substrate] in CH2Cl2. Conversion percentages are
estimated based on integration of the 1H NMR of the unpurified
8 M. Almi, A. Arduini, A. Casnati, A. Pochini and R. Ungaro,
Tetrahedron, 1989, 45, 2177.
b
c
9 For previous examples of dimeric Rh compounds possessing mixed
carboxylate ligand sets, see 4c and (a) H. J. Callot, A.-M. Albrecht-
Gary, M. Al Joubbeh, B. Metz and F. Metz, Inorg. Chem., 1989, 28,
3633; (b) F. A. Cotton and J. L. Thompson, Inorg. Chim. Acta, 1984, 81,
193.
reaction
mixture.
Ad
=
1-adamantyl.
Rh2(esp)2
Rh2(a,a,a9,a9-tetramethyl-1,3-benzenedipropionate)2, see ref. 2.
=
The catalytic performance of the calixarene-based complexes for
the oxidative amination of C–H bonds is higher than almost all
other dinuclear Rh systems tested (Table 2). Of these, only
Rh2(esp)2 has proven more effective (entry 11). Interestingly,
catalyst turnover expresses a noted dependence on the steric and
electronic structure of the solvent-exposed mono-carboxylate
ligand. As an example, Rh2(CLX-H2)(OAc)(O2CCF3) 3, with its
highly labile trifluoroacetate goup, is entirely ineffective when
tested against two sulfamate esters (entries 2 and 4, Table 2). This
finding suggests that partial or complete dissociation of a single
bridging ligand may trigger catalyst decomposition. Conversely,
Rh2(CLX-H2)(OAc)(O2CCPh3) exhibits greater stability and
higher turnover numbers when compared to the parent diacetate
complex (entries 5 and 7). Studies to determine the precise
mechanistic reasons for these phenomena are currently in progress.
A unique family of dirhodium complexes supported by the
tetracarboxylate ligand CLX-H4 is described. Favorable non-
covalent interactions between the methyl group of an acetate
ligand and the aromatic walls of the calixarene frame make
possible the efficient assembly of these unprecedented lantern
structures. A second acetate bridge, which sits opposite the
calixarene, is readily exchanged with different carboxylate groups.
These mixed-carboxylate systems have been tested as catalysts for
C–H amination and display estimable performance when com-
pared to other known Rh dimers. Accordingly, access to disparate
dirhodium complexes based on the multidentate CLX-H4 ligand
will aid investigations to reveal the complex process(es) that lead to
catalyst inactivation and decomposition in these C–H oxidation
reactions. We anticipate that such insights will give way to
subsequent methodological advances for both intra- and inter-
molecular C–H functionalization chemistry.
10 For previous examples of ligand entrapment by calix[4]arenes, see ref. 6
and: (a) C. Jeunesse, D. Armspach and D. Matt, Chem. Commun., 2005,
5603; (b) C. Wieser-Jeunesse, D. Matt and A. De Cian, Angew. Chem.,
1998, 110, 3027, (Angew. Chem., Int. Ed., 1998, 37, 2861).
11 A) 2?EtOAc: C60H76O22Rh2: Mr = 1355.03, orthorhombic, space group
3
Pbca, a = 20.989(3), b = 19.577(3), c = 29.775(4) A, V = 12235(3) A , Z =
˚
˚
8, T = 170 K, 66 886 reflections measured, 12 453 unique (Rint
=
0.0490), m = 0.62 cm21, R1 = 0.0903, wR2 = 0.2045 for F0 . 4s(F0).
The hydroxyl groups of the axially disposed carboxylic acid ligands
display significant positional disorder, suggesting two H-bond interac-
tions with proximal carboxylate ligands. B) 3?Et2O: C60H75F3O21Rh2:
¯
Mr = 1395.02, triclinic, space group P1, a = 11.144(1), b = 15.847(2), c =
˚
17.717(2) A, a = 86.286(2), b = 88.553(2), c = 86.249(2)u, V =
3
˚
3115.0(5) A , Z = 2, T = 170 K, 20 750 reflections measured, 12 496
unique (Rint = 0.0397), m = 0.61 cm21, R1 = 0.0526, wR2 = 0.1370 for
F0 . 4s(F0). CCDC 606038 and CCDC 606037. For crystallographic
data in CIF or other electronic format see DOI: 10.1039/b611280c.
12 H. T. Chifotides and K. R. Dunbar, in Multiple Bonds Between Metal
Atoms, ed. F. A. Cotton, C. A. Murillo and R. A. Walton, Springer
Science and Business Media, Inc., New York, 3rd edn., 2005, pp. 465.
13 For examples of intramolecular hydrogen bonds between axial and
equatorial ligands of dinuclear Rh complexes, see: (a) K. Aoki and
M. A. Salam, Inorg. Chim. Acta, 2002, 339, 427; (b) K. Aoki, M. Inaba,
S. Teratani, H. Yamazaki and Y. Miyashita, Inorg. Chem., 1994, 33,
3018; (c) P. Lahuerta, J. Latorre, E. Peris, M. Sanau´ and S. Garc´ıa-
Granda, J. Organomet. Chem., 1993, 456, 279; (d) H. T. Chifotides,
K. R. Dunbar, J. H. Matonic and N. Katsaros, Inorg. Chem., 1992, 31,
4628; (e) P. Lahuerta, J. Paya´, E. Peris, M. A. Pellinghelli and
A. Tiripicchio, J. Organomet. Chem., 1989, 373, C5; (f) A. R.
Chakravarty, F. A. Cotton, D. A. Tocher and J. H. Tocher,
Organometallics, 1985, 4, 8.
14 P. Lahuerta and E. Peris, Inorg. Chem., 1992, 31, 4547.
15 See Ref. 4 and: (a) R. P. Bonar-Law, T. D. McGrath, N. Singh,
J. Bickley, C. Femoni and A. Steiner, J. Chem. Soc., Dalton Trans.,
2000, 4343; (b) J. F. Gallagher, G. Ferguson and A. J. McAlees, Acta
Crystallogr., Sect. C: Cryst. Struct. Commun., 1997, C53, 576.
16 (a) U. Darbost, M.-N. Rager, S. Petit, I. Jabin and O. Reinaud, J. Am.
Chem. Soc., 2005, 127, 8517; (b) O. Se´ne`que, M. Giorgi and O. Reinaud,
Chem. Commun., 2001, 984; (c) H. Takahashi, S. Tsuboyama,
Y. Umezawa, K. Honda and M. Nishio, Tetrahedron, 2000, 56, 6185;
(d) M. Nishio, Y. Umezawa, M. Hirota and Y. Takeuchi, Tetrahedron,
1995, 51, 8665; (e) G. D. Andreetti, R. Ungaro and A. Pochini, J. Chem.
Soc., Chem. Commun., 1979, 1005.
Notes and references
1 (a) J. Du Bois, Chemtracts, 2005, 18, 1; (b) C. G. Espino and J. Du Bois,
in Modern Rhodium-Catalyzed Organic Reactions, ed. P. A. Evans,
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 4715–4717 | 4717