ORGANIC
LETTERS
2007
Vol. 9, No. 1
117-120
Lewis Acid Catalyzed Rearrangement of
Vinylcyclopropenes for the Construction
of Naphthalene and Indene Skeletons
Li-Xiong Shao,† Yun-Peng Zhang,† Ming-Hui Qi,† and Min Shi*,†,‡
School of Chemistry and Molecular Engineering, East China UniVersity of Science and
Technology, 130 Meilong Road, Shanghai, China 200237, and State Key Laboratory of
Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 354 Fenglin Road, Shanghai, China 200032
Received November 2, 2006
ABSTRACT
The choice of Lewis acid catalyst can result in dramatic differences in the chemoselectivity of the rearrangement reactions of vinylcyclopropenes.
When BF3 OEt2 was used as the catalyst, naphthalenes were formed. However, when Cu(OTf)2 was used as the catalyst, indenes were obtained.
‚
Thermal and photochemical skeleton rearrangements of
strained small rings with multiple bonds and functional
groups have attracted much attention from both synthetic
and mechanistic viewpoints. However, only a few examples
of such thermal1 and photochemical2 skeletal conversions
of vinylidenecyclopropanes 1 have been reported. Previously,
we observed that naphthalene, 6aH-benzo[c]fluorine, and
indene derivatives can be obtained by Lewis acid catalyzed
rearrangement of arylvinylidenecyclopropanes 1 depending
on the substitution pattern on the cyclopropyl ring and the
electronic nature of aryl groups.3 In this paper, we wish to
report the Lewis acid catalyzed rearrangement of vinylcy-
clopropenes 2, which are derived from the corresponding
vinylidenecyclopropanes 1 under basic conditions, to afford
naphthalene and indene skeletons in good to high yields
under mild conditions.
As shown in Table 1, vinylcyclopropenes 2 are readily
accessible from simple isomerization of the corresponding
vinylidenecyclopropanes 1 under basic conditions. For all
(2) (a) Akasaka, T.; Misawa, Y.; Ando, W. Tetrahedron Lett. 1990, 31,
1173. (b) Mizuno, K.; Sugita, H.; Isagawa, K.; Goto, M.; Otsuji, Y.
Tetrahedron Lett. 1993, 34, 5737. (c) Mizuno, K.; Nire, K.; Sugita, H.;
Otsuji, Y. Tetrahedron Lett. 1993, 34, 6563. (d) Mizuno, K.; Sugita, H.;
Hirai, T.; Maeda, H. Chem. Lett. 2000, 1144. (e) Mizuno, K.; Nire, K.;
Sugita, H.; Maeda, H. Tetrahedron Lett. 2001, 42, 2689. (f) Mizuno, K.;
Maeda, H.; Sugita, H.; Nishioka, S.; Hirai, T.; Sugimoto, A. Org. Lett.
2001, 3, 581. (g) Mizuno, K.; Sugita, H.; Hirai, T.; Maeda, H.; Otsuji, Y.;
Yasuda, M.; Hashiguchi, M.; Shima, K. Tetrahedron Lett. 2001, 42, 3363.
(h) Maeda, H.; Zhen, L.; Hirai, T.; Mizuno, K. ITE Lett. Batteries, New
Technol. Med. 2002, 3, 485.
(3) (a) Shi, M.; Lu, J.-M. J. Org. Chem. 2006, 71, 1920. (b) Shi, M.;
Lu, J.-M. Synlett 2005, 2352. (c) Shi, M.; Ma, M.; Shao, L.-X. Tetrahedron
Lett. 2005, 46, 7609. (d) Shi, M.; Lu, J.-M.; Xu, G.-C. Tetrahedron Lett.
2005, 46, 4745. (e) Xu, G.-C.; Ma, M.; Liu, L.-P.; Shi, M. Synlett 2005,
1869. (f) Xu, G.-C.; Liu, L.-P.; Lu, J.-M.; Shi, M. J. Am. Chem. Soc. 2005,
127, 14552.
† East China University of Science and Technology.
‡ Shanghai Institute of Organic Chemistry.
(1) (a) Paulson, D. R.; Crandall, J. K.; Bunnell, C. A. J. Org. Chem.
1970, 35, 3708. (b) Jones, M., Jr.; Hendrick, M. E.; Hardie, J. A. J. Org.
Chem. 1971, 36, 3061. (c) Patrick, T. B.; Haynie, E. C.; Probst, W. J. J.
Org. Chem. 1972, 37, 1553. (d) Sadler, I. H.; Stewart, J. A. G. J. Chem.
Soc., Perkin Trans. 2 1973, 278. (e) Sugita, H.; Mizuno, K.; Saito, T.;
Isagawa, K.; Otsuji, Y. Tetrahedron Lett. 1992, 33, 2539. (f) Mizuno, K.;
Sugita, H.; Kamada, T.; Otsuji, Y. Chem. Lett. 1994, 449. (g) Maeda, H.;
Hirai, T.; Sugimoto, A.; Mizuno, K. J. Org. Chem. 2003, 68, 7700.
10.1021/ol0626746 CCC: $37.00
© 2007 American Chemical Society
Published on Web 12/07/2006