3118
A. L. Schwan et al.
LETTER
(20) Compound 5 and its isomer were not amenable to flash
(10) Lautier, D.; Lagueux, J.; Thibodeau, J.; Menard, L.; Poirier,
G. G. Mol. Cell. Biochem. 1993, 122, 171.
(11) Armstrong, S.; Li, J.-H.; Zhang, J.; Merrill, A. R. J. Enzyme
Inhib. Med. Chem. 2002, 17, 235.
chromatography, but fortunately 5 could be cleanly
separated from the more soluble isomer by toluene
recrystallization.
(12) Yates, S. P.; Taylor, P. L.; Jørgensen, R.; Ferraris, D.;
Zhang, J.; Andersen, G. R.; Merrill, A. R. Biochem. J. 2005,
385, 667.
(13) Dai, W.-M.; Zhang, Y.; Zhang, Y. Tetrahedron: Asymmetry
2004, 15, 525.
(21) The ketimine arising from loss of styryl or 1,1-diphenylethyl
cation from 9 may also be implicated in this mechanism.
However, efforts to detect or isolate the ketimine and a more
stabilized version of it proved fruitless. The analogous cyclic
sulfonimines(benzisothiazoles) exhibit more stability and
can be obtained by a related N-decumylation/dehydration
treatment. See: Metallinos, C. Synlett 2002, 1556.
(22) Ent, H.; De Koning, H.; Speckamp, W. N. J. Org.Chem.
1986, 51, 1687.
(23) Ent, H.; De Koning, H.; Speckamp, W. N. Tetrahedron Lett.
1985, 26, 5105.
(24) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.;
Maryanoff, C. A. Chem. Rev. 2004, 104, 1431.
(14) Clayden, J.; Frampton, C. S.; McCarthy, C.; Westlund, N.
Tetrahedron 1999, 55, 14161.
(15) Metallinos, C.; Nerdinger, S.; Snieckus, V. Org. Lett. 1999,
1, 1183; comparable results were found using TFA.
(16) Rearrangement products 7 and 8 could be identified through
spectral analysis including the observation of vinylic
resonances in the 1H NMR spectra. Tertiary alcohols 6,
obtained as mixtures of diastereomers, were identified with
the assistance of IR spectroscopy and mass spectrometry
where applicable. Strong M+ peaks were seen under CI
conditions. Full characterization data including elemental
analysis or HRMS was obtained for all new compounds.
Sample procedure for rearrangement: Isoindolone 3a (154
mg, 0.406 mmol, 1.0 equiv) was dissolved in 2.5 mL dry
CH2Cl2 in a flame-dried flask under argon and cooled to
0 °C. Then, BF3·OEt2 (0.06 mL, 0.570 mmol, 1.4 equiv) was
dissolved in 2.5 mL of dry CH2Cl2 in a flame-dried flask
under argon and transferred to the solution of 3a via cannula,
followed by a 2.5 mL CH2Cl2 rinse. The resulting dark
brown solution quickly became clear and colorless, and was
stirred overnight at r.t. The reaction was quenched with H2O,
extracted with CH2Cl2, dried with brine and MgSO4 and
concentrated. Flash chromatography with 15% EtOAc in
hexane gave 69.0 mg (47% yield) of 7c and 39.6 mg (26%
yield) of 6ac.
(25) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56,
3817.
(26) Generally cyclic N-acyliminium ion chemistry involves
carbon substitution and then introduction of another reagent
for nitrogen deprotection, if desired. Some examples of the
one-pot realization of both reactions are known: (a) Pinder,
J. L.; Weinreb, S. M. Tetrahedron Lett. 2003, 44, 4141.
(b) Reichelt, A.; Bur, S. K.; Martin, S. F. Tetrahedron 2002,
58, 6323. (c) Lundkvist, J. R. M.; Wistrand, L. G.; Hacksell,
U. Tetrahedron Lett. 1990, 31, 719. (d) Botman, P. N. M.;
Dommerholt, F. J.; de Gelder, R.; Broxterman, Q. B.;
Schoemaker, H. E.; Rutjes, F. P. J. T.; Blaauw, R. H. Org.
Lett. 2004, 6, 4941. (e) Granier, T.; Vasella, A. Helv. Chim.
Acta 1998, 81, 865. (f) Lundkvist, J. R. M.; Vargas, H. M.;
Caldirola, P.; Ringdahl, B.; Hacksell, U. J. Med. Chem.
1990, 33, 3182.
(27) Stajer, G.; Csende, F. Curr. Org. Chem. 2005, 9, 1277.
(28) This general family of compounds has biological
significance in a variety of areas: (a) Wrobel, J.; Dietrich,
A.; Woolson, S. A.; Millen, J.; McCaleb, M.; Harrison, M.
C.; Hohman, T. C.; Sredy, J.; Sullivan, D. J. Med. Chem.
1992, 35, 4613. (b) Andrews, M. D.; Brewster, A. G.;
Chuhan, J.; Ibbett, A. J.; Moloney, M. G.; Prout, K.; Watkin,
D. Synthesis 1997, 305. (c) Toyooka, K.; Kanamitsu, N.;
Yoshimura, M.; Kuriyama, H.; Tamura, T. WO 048332,
2004; Chem. Abstr. 2004, 141, 38525. (d) Guillaumel, J.;
Leonce, S.; Pierre, A.; Renard, P.; Pfeiffer, B.; Peruchon, L.;
Arimondo, P. B.; Monneret, C. Oncol. Res. 2003, 13, 537.
(e) Mertens, A.; Zilch, H.; Koenig, B.; Schaefer, W.; Poll,
T.; Kampe, W.; Seidel, H.; Leser, U.; Leinert, H. J. Med.
Chem. 1993, 36, 2526.
3-(2,2-Diphenylethenyl)-2,3-dihydro-1H-benzo[e]isoindol-
1-one (7c): mp: 199-200 °C. 1H NMR (400 MHz, DMSO-
d6): d = 9.08 (d, J = 8.3 Hz, 1 H), 8.14 (d, J = 8.4 Hz, 1 H),
8.04 (d, J = 8.2 Hz, 1 H), 7.68–7.65 (m, 1 H), 7.61–7.41 (m,
9 H), 7.29–7.19 (m, 3 H), 5.81 (d, J = 9.9 Hz, 1 H), 5.04
(d, J = 9.9 Hz, 1 H). 13C NMR (100 MHz, DMSO-d6): d =
170.6, 170.5, 147.1, 145.3, 140.6, 138.5, 132.9, 132.7,
129.7, 128.83, 128.77, 128.4, 127.9, 127.8, 127.0, 126.5,
125.5, 125.4, 122.9, 120.8, 55.4. IR (neat) 3447, 1690 cm–1.
MS (EI): m/z (%) = 362 (29), 361 (100) [M+], 284 (37). Anal.
Calcd (%): C, 86.40; H, 5.30; N, 3.88. Found: C, 86.20; H,
5.54; N, 3.95.
3-(2,2-Diphenyl-2-hydroxyethyl)-2,3-dihydro-1H-
benzo[e]isoindol-1-one (6ac): 1H NMR (400 MHz, CDCl3):
d = 8.88 (d, J = 8.3 Hz, 1 H), 7.84 (d, J = 8.3 Hz, 1 H), 7.74
(d, J = 8.1 Hz, 1 H), 7.47–7.36 (m, 4 H), 7.25–7.20 (m, 5 H),
7.15–7.03 (m, 4 H), 4.32 (d, J = 10.4 Hz, 1 H), 2.96 (d,
(29) Representative Procedure.
Isoindolone 3b (125 mg, 0.395 mmol, 1.0 equiv) and
allyltrimethylsilane (0.25 mL, 1.57 mmol, 4.0 equiv) were
slurried in 2.5 mL of dry CH2Cl2 in a flame-dried flask under
argon and cooled to 0 °C. Then, BF3·OEt2 was dissolved in
2.5 mL of dry CH2Cl2 in a flame-dried flask under argon and
transferred to the solution of 3b and thiol via cannula,
followed by a 2.5 mL CH2Cl2 rinse. The clear colorless
reaction mixture was stirred at r.t. overnight before
quenching with H2O, extracting with CH2Cl2, drying with
brine and MgSO4 and concentrating. Flash chromatography
with 20% EtOAc in hexane gave 71 mg (80% yield) of 13.
3-Allyl-2,3-dihydro-1H-benz[e]isoindol-1-one (13): 1H
NMR (400 MHz, CDCl3): d = 9.22 (d, J = 8.4 Hz, 1 H), 8.02
(d, J = 8.4 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 1 H), 7.67 (t, J = 7.2
Hz, 1 H), 7.57 (t, J = 7.2 Hz, 1 H), 7.52 (d, J = 8.4 Hz, 1 H),
5.89–5.78 (m, 1 H), 5.19 (d, J = 16.4 Hz, 1 H), 5.16 (d,
J = 10.0 Hz, 1 H), 4.72 (dd, J = 8.0, 4.5 Hz, 1 H), 2.85–2.79
(m, 1 H), 2.42–2.35 (m, 1 H). 13C NMR (100.6 MHz,
J = 13.8 Hz, 1 H), 2.17 (dd, J = 13.8, 10.4 Hz, 1 H). 13
C
NMR (75.5 MHz, acetone-d6): d = 170.8, 151.8, 149.9,
148.9, 148.8, 147.3, 134.1, 133.2, 130.4, 129.1, 129.0,
128.4, 127.9, 127.6, 127.1, 127.0, 124.3, 121.2, 78.6, 54.2,
47.4. IR (nujol): 3426, 3353, 1668 cm–1. MS (EI): m/z (%) =
379 (8) [M+], 361 (32), 284 (16), 196 (42), 184 (27), 183
(32), 182 (59), 105 (27). MS (CI): m/z (%) = 380 (90) [M +
H]+, 362 (44), 213 (53), 200(100), 196 (55), 183 (39). HRMS
(EI): m/z calcd for C26H19NO [M – 18]+: 361.1468; found:
361.1470.
(17) Watanabe, M.; Snieckus, V. J. Am. Chem. Soc. 1980, 102,
1457.
(18) Chen, C. W.; Beak, P. J. Org. Chem. 1986, 51, 3325.
(19) Bindal, R. D.; Katzenellenbogen, J. A. J. Org. Chem. 1987,
52, 3181.
Synlett 2006, No. 18, 3115–3119 © Thieme Stuttgart · New York