M. Biswas et al. / Polyhedron 26 (2007) 123–132
131
of the plot with the Brillouin plot (dashed plot) for one iso-
lated ion with S = 1/2 system and g = 2 indicates slower
magnetization which is consistent with a weak antiferro-
magnetic interaction.
Cheshire, UK and grants given by the Ministerio de Edu-
´
´
y Ciencia (Programa Ramon y Cajal) and
cacion
BQU2003/00539.
For 4 the value of vMT at 300 K is 0.409 cm3 molꢀ1K
which is as expected for one uncoupled copper(II) ion
(0.413 cm3 molꢀ1 K per one CuII with g = 2.1). The vMT
values are constant over the temperature range, decreasing
to 0.0644 cm3 molꢀ1 K, at very low temperatures (2 K).
The vM curve starts at 1.36 · 10ꢀ3 cm3 molꢀ1 at room tem-
perature and increases in a uniform way to 0.0322
cm3 molꢀ1 at 2 K. The weak antiferromagnetic interaction
was confirmed by magnetization measurements at 2 K up
to an external field of 5 T. At higher field, the magnetiza-
tion in M/Nb units indicates a 0.2945 value for 4 (inset
Fig. 11). Comparison of the overall shape of the plot with
the Brillouin plot for one fully isolated ion with S = 1/2
system with g = 2.1 (dash curve) indicates very slow mag-
netization which consistent with a weak antiferromagnetic
interaction.
Taking into account the structure of 4 (Fig. 7), which
consists of copper ions linked by double l1,5-dicyanamide
groups in a 1D system, only one coupling parameter (J)
was considered to interpret possible magnetic interactions
in this compound (the interaction through the hydrogen
bonding has not been considered). The experimental mag-
netic data have been fitted using the equation which was
Appendix A. Supplementary data
Crystallographic data have been deposited at the
Cambridge Crystallographic Data Centre with deposition
numbers 602010–602014. These data can be obtained free
html or from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 IEZ, UK; fax:
+44 1223 336 033; or e-mail deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be
References
[1] B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629.
[2] G.F. Swiegers, T.J. Malefetse, Chem. Rev. 100 (2000) 3483.
[3] M.J. Zaworotko, Chem. Commun. (2001) 1.
[4] T. Kuroda-Sowa, T. Horino, M. Yamamoto, Y. Ohno, M. Maekawa,
M. Munakata, Inorg. Chem. 36 (1997) 6382.
[5] K. Biradha, Y. Hongo, M. Fujita, Angew. Chem., Int. Ed. 39 (2000)
3843.
[6] M.J. Zaworotko, Angew. Chem., Int. Ed. 39 (2000) 3052.
[7] M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 116
(1994) 1151.
[8] M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K.
Birdha, Chem. Commun. (2001) 509.
[9] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M.
O’Keeffe, O.M. Yaghi, Acc. Chem. Res. 34 (2001) 319.
[10] L.R. MacGillivary, S. Subramanian, M.J. Zaworotko, J. Chem. Soc.,
Chem. Commun. (1994) 1325.
[11] (a) L.J. Moitsheki, S.A. Bourne, L.R. Nassimbeni, Acta Cryst. Sect.
E. 61 (2005) m2580;
(b) D. Vujovic, H.G. Raubenheimer, L.R. Nassimbeni, J. Chem. Soc.,
Dalton Trans. (2003) 631.
[12] (a) D. Venkataraman, G.B. Gardner, S. Lee, J.S. Moore, J. Am.
Chem. Soc. 117 (1995) 11600;
(b) O.M. Yaghi, G. Li, H. Li, Nature 378 (1995) 703;
(c) C.J. Kepert, M.J. Rosseinsky, Chem. Commun. (1999) 375.
[13] (a) J.S. Miller, A.J. Epstein, Angew. Chem., Int. Ed. 33 (1994) 385;
derived from the Bonner–Fisher [21] calculation based on
P
the isotropic Heisenberg Hamiltonian: H = ꢀJ (SiSi+1).
The best fit parameters from 300 down to 2 K are found
as J = ꢀ5.1 cmꢀ1 and g = 2.1 with an error R = 2.3 ·
P
P
10ꢀ5, where R = [(vMT)exp ꢀ (vMT)calc]2/ [(vMT)exp]2.
The low superexchange parameter value found can be
understood perfectly, if we consider the data reported in
the literature. Indeed, the dicyanamide ligand in the coor-
dination mode l1,5 normally leads to a very weak antiferro-
magnetic coupling in Mn(II) , Ni(II) or Cu(II) complexes
and this interaction can even be zero or very weak ferro-
magnetic [22].
4. Conclusion
¨
(b) M. Ohba, H. Okawa, Coord. Chem. Rev. 198 (2000) 313;
(c) K.R. Dunbar, R.A. Heintz, Progr. Inorg. Chem. 45 (1997) 283;
(d) E. Coronado, J.R. Galan-Mascaros, C.J. Gomez-Garcia, J.
Ensling, P. Gutlich, Chem. Eur. J. 6 (2000) 552;
We have synthesized five new metal-organic frameworks
including the first Cu(II) polymers with para- and ortho-
ABN ligands. In these compounds dca and para-ABN
ligands show the terminal as well as bridging bonding
mode whereas ortho- and meta-ABN coordinated only in
a monodentate fashion. The spin coupling constants, J,
were estimated to be ꢀ2.35 and ꢀ5.1 cmꢀ1 for 3 and 4,
respectively.
´
´
´
(e) E. Coronado, M. Clemete-Leon, J.R. Galan- Mascaros, C.
´
´
´
´
Gimenez-Saiz, C.J. Gomez-Garcıa, E. Martınez- Ferrero, J. Chem.
Soc., Dalton. Trans. (2000) 3955.
[14] S.R. Batten, K.S. Murray, Coord. Chem. Rev. 246 (2003) 103.
[15] The United Kingdom Chemical Database Service D.A. Fletcher, R.F.
McMeeking, D. Parkin, J. Chem. Inf. Comput. Sci. 36 (1996) 746.
[16] (a) F.H. Allen, Acta Crystallogr. B58 (2002) 380;
(b) I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae,
P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr. B58 (2002) 389.
[17] G.M. Sheldrick, SHELXTL version 5.1, Bruker Inc., Madison, Wiscon-
sin, USA, 1999.
Acknowledgements
[18] Nonius COLLECT, DENZO, SCALEPACK, SORTAV: Kap-
paCCD B.V., Delft, The Netherlands, 1999.
[19] G. Cascarano, A. Altomare, C. Giacovazzo, A. Guagliardi, A.G.G.
Moliterni, D. Siliqi, M.C. Burla, G. Polidori, M. Camalli, Acta
Crystallogr. A52 (1996) C-79.
We acknowledge the financial support from the Council
of Scientific and Industrial Research, New Delhi, India to
Moumita Biswas. We also wish to acknowledge the use
of the EPSRC’s Chemical Database Service at Daresbury,