Bolz et al.
SCHEME 1. Keto-Enol Tautomerism of 1 Producing
Hydrogen-Bonding Patterns (A ) Hydrogen Bond Acceptor
Site, D ) Hydrogen Bond Donor Site)a
externally induced formation of the enol1 or enol2 form should
cause a significant bathochromic shift in the UV/vis spectrum.
In contrast to the established Merocyanine dyes, the enolizable
barbituric acid serves as a (+M)-substituent which is of
importance for the construction of chromophoric probes relating
to this type of compounds that are still not established for
probing molecular recognition. However, the possible occur-
rence of both tautomeric forms as well as molecular adducts
complicates a clear assignment of observed UV/vis absorption
spectra to a well-defined molecular structure.
Therefore, we have investigated the solid-state structures of
the corresponding assemblies of 1 with the Proton Sponge PS
and the adenine-mimetic base 2,6-diacetamidopyridine DAC to
identify whether mere salt formation occurs or rather genuine
supramolecular complexes are built. The balance between them
is dependent on both the presence of a suitable hydrogen-
bonding pattern of the base and its basicity strength,10 e.g., an
association of nucleobases with synthetic ligands like DAC
mediated by hydrogen bonds has been a longstanding focus of
supramolecular chemistry.11 Proton-transfer reactions of Brøn-
sted acids in the presence of PS have been widely studied.12
The synergism of the two effects and its influence on the
complex (or salt) structures of 1 with different bases is a further
objective of this work. Since various molecular structures can
contribute to the UV/vis response caused by the molecular
recognition, a thorough investigation of the solid-state structures
is required to demonstrate the versatile bonding potential of this
new type of compound toward those structurally different bases.
In order to derive the structure of the various compounds,
we employed both single-crystal X-ray analysis and advanced
solid-state NMR spectroscopy, which in recent years has shown
to be a versatile and powerful tool for the characterization of
materials.13,14 In particular, information about hydrogen-bonding
a Two different enol forms with either vicinal or opposed OH and NH
protons are possible.
D ) hydrogen bond donor site) suitable for selective binding
to bases offering a complementary DAD pattern. Merocyanine
dyes which contain the barbituric acid moiety as an electron-
withdrawing group are well established in the literature.6–8 Due
to the barbituric acid moiety being negatively polarized in
merocyanine-type dyes their UV/vis absorption band is affected
by acids rather than by proton acceptors, which makes them
unsuitable for the recognition of bases with ADA pattern or
related molecules.8
Therefore, in our conceptual development the barbituric acid
moiety should be an electron-donating substituent and has to
be linked to chromophores which bear electron-withdrawing
substituents. These requirements are accomplished, if the
barbituric acid is directly linked at the C5-position to a
chromophoric system under retention of an acid proton suitable
to undergo keto-enol equilibriums. However, these structurally
simple barbiturates are still not established in the literature which
is assigned to the nontrivial structure determination.9 The
occurrence of the tautomeric forms offers two different hydrogen-
bonding patterns ADA and DDA, respectively. Furthermore,
aggregate formation complicates a clear structure assignment
of those dyes even in the pure form. Therefore, the detailed
knowledge of the structural versatility of enolizable barbituric
acid dyes is very important in order to construct novel types of
UV/vis probes for molecular recognition.
In this paper, we report on the synthesis and solid-state
structure of the enolizable chromophor 1-n-butyl-5-(4-nitrophe-
nyl)barbituric acid 1 that features adjustable hydrogen-bonding
properties. The prototropic tautomerism of this dye facilitates
an adjustment to complementary bases containing a DDA or
ADA sequences (Scheme 1).
The switching between the two principle tautomeric forms
of 1 (keto1/keto2 or enol1/enol2, cf. Scheme 1) is associated
with dramatic changes in the extent of π-conjugation. The enol
substituent contributes to a push-pull system due to the para
conjugation with the nitro group, while the keto substituent
belongs to a common nitro-substituted aromatic system. Thus,
(10) Kaljurand, I.; Ku¨tt, A.; Soova¨li, L.; Rodima, T.; Ma¨emets, V.; Leito, I.;
Koppel, I. A. J. Org. Chem. 2005, 70, 1019–1028.
(11) For some selected recent publications, see: (a) Jorgensen, W. L.; Pranata,
J. J. Am. Chem. Soc. 1990, 112, 2008–2010. (b) Yu, L.; Schneider, H.-J. Eur. J.
Org. Chem. 1999, 1619–1625. (c) Zimmerman, S. C.; Corbin, P. C. Struct.
Bonding (Berlin) 2000, 96, 63–94. (d) Rotello, V. M. Curr. Org. Chem. 2001,
5, 1079–1090, and references cited therein.
(12) (a) Staab, H. A.; Saupe, T. Angew. Chem. 1988, 100, 895-909; Angew.
Chem., Int. Ed. 1988, 27, 865-879. (b) Alder, R. W. Chem. ReV. 1989, 89,
1215–1223. (c) Llamas-Saiz, A. L.; Foces-Foces, C.; Elguero, J. J. Mol. Struct.
1994, 328, 297–323. (d) Grech, E.; Klimkiewicz, J.; Nowicka-Scheibe, J.;
Pietrazak, M.; Schilf, W.; Pozharski, A. F.; Ozeryanskii, V. A.; Bolvig, S.;
Abildgaard, J.; Hansen, P. E. J. Mol. Struct. 2002, 615, 121–140, and references
cited therein.
(13) For recent reviews, see: (a) Brown, S. P.; Spiess, H. W. Chem. ReV.
2001, 101, 4125–4155. (b) Reichert, D. Annu. Rep. NMR Spectrosc. 2005, 55,
159–203. (c) Eckert, H.; Elbers, S.; Epping, J. D.; Janssen, M.; Kalwei, M.;
Strojek, W.; Voigt, U. Top. Curr. Chem. 2005, 246, 195–233. (d) Ashbrook,
S. E.; Smith, M. E. Chem. Soc. ReV. 2006, 35, 718–735. (e) Brown, S. P. Prog.
Nucl. Magn. Reson. 2007, 50, 199–251, and references cited therein.
(14) (a) Harris, R. K.; Jackson, P.; Merwin, L. H.; Say, B. J.; Hagele, G.
J. Chem. Soc., Faraday Trans. 1988, 84, 3649–3649. (b) Harris, R. K. Solid
State Sci. 2004, 6, 1025–1037. (c) Taulelle, F. Solid State Sci. 2004, 6, 1053–
1057. (d) Harris, R. K. Analyst 2006, 131, 351–373.
(15) For some selected recent publications, see: (a) Geen, H.; Titman, J. J.;
Gottwald, J.; Spiess, H. W. Chem. Phys. Lett. 1994, 227, 79–86. (b) Gottwald,
J.; Demco, D. E.; Graf, R.; Spiess, H. W. Chem. Phys. Lett. 1995, 243, 314–
323. (c) Brown, S. P.; Schaller, T.; Seelbach, U. P.; Koziol, F.; Ochsenfeld, C.;
Kla¨ner, F.-G.; Spiess, H. W. Angew. Chem. 2001, 113, 740-743; Angew. Chem.,
Int. Ed. 2001, 40, 717-720. (d) Ochsenfeld, C.; Brown, S. P.; Schnell, I.; Gauss,
J.; Spiess, H. W. J. Am. Chem. Soc. 2001, 123, 2597–2606. (e) Ochsenfeld, C.;
Kussmann, J.; Koziol, F. Angew. Chem. 2004, 116, 4585-4589; Angew. Chem.,
Int. Ed. 2004, 43, 4485-4489. (f) Brown, S. P.; Lesage, A.; Elena, B.; Emsley,
L. J. Am. Chem. Soc. 2004, 126, 13230–13231. (g) Densmore, C. G.; Rasmussen,
P. G.; Goward, G. R. Macromolecules 2005, 38, 416–421. (h) Alam, T. M.;
Nyman, M.; McIntyre, S. K. J. Phys. Chem. A 2007, 111, 1792–1799. (i) Schaller,
T.; Bu¨chele, U. P.; Kla¨ner, F.-G.; Bla¨ser, D.; Boese, R.; Brown, S. P.; Spiess,
H. W.; Koziol, F.; Kussmann, J.; Ochsenfeld, C. J. Am. Chem. Soc. 2007, 129,
1293–1303, and references cited therein.
(7) (a) Wu¨rthner, F.; Yao, S.; Debaerdemaeker, T.; Wortmann, R. J. Am.
Chem. Soc. 2002, 124, 9431–9447. (b) Wu¨rthner, F.; Yao, S. J. Org. Chem.
2003, 68, 8943–8949. (c) Wu¨rthner, F. W. Chem. Commun. 2004, 1564–1579.
(8) (a) Rezende, M. C.; Campodonico, P.; Abuin, E.; Kossanyi, J. Spectro-
chim. Acta A 2001, 57, 1183–1190. (b) Kulinich, A. V.; Derevyanko, N. A.;
Ishchenko, A. A. Russ. J. Gen. Chem. 2006, 76, 1441–1457. (Engl.Transl.)
(9) (a) Braun, H.-J. Semadeni, P. A. Ger. 1999, DE 19728389 C1. (b) Bolz,
I.; May, C.; Spange, S. ArkiVoc 2007, iii, 60–67. (c) Bolz, I.; May, C.; Spange,
S. New J. Chem. 2007, 31, 1568–1571.
4784 J. Org. Chem. Vol. 73, No. 13, 2008