C O M M U N I C A T I O N S
Scheme 2
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Taber, D. F.; Joshi, P. V. J. Org. Chem. 2004, 69, 4276. (b) Davies,
H. M. L.; Manning, J. R. J. Am. Chem. Soc. 2006, 128, 1060. (c)
Bykowski, D.; Wu, K.-H.; Doyle, M. P. J. Am. Chem. Soc. 2006, 128,
16038.
(2) (a) Fruit, C.; Mu¨ller, P. Tetrahedron: Asymmetry 2004, 15, 1019. (b)
Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc.
2004, 126, 15378. (c) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem.
Soc. 2005, 127, 14198. (d) Liang, C.; Robert-Peillard, F.; Fruit, C.; Mu¨ller,
P.; Dodd, R. H.; Dauban, P. Angew. Chem., Int. Ed. 2006, 45, 4641. (e)
Reddy, R. P.; Davies, H. M. L. Org. Lett. 2006, 8, 5013. (f) Fiori, K. W.;
Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562.
(3) For demonstrations of Rh(II)-mediated atom transfer reactions in total
synthesis, see: (a) Doyle, M. P.; Hu, W.; Valenzuela, M. V. J. Org. Chem.
2002, 67, 2954. (b) Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003,
125, 11510. (c) Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem.
Soc. 2006, 128, 2485. (d) Mej´ıa-Oneto, J. M.; Padwa, A. Org. Lett. 2006,
8, 3275.
(4) Ye, T.; McKervey, M. A. Chem. ReV. 1994, 94, 1091.
(5) (a) Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1983, 105, 6728. (b)
Mansuy, D.; Mahy, J.-P.; Dure´ault, A.; Bedi, G.; Battioni, P. Chem.
Commun. 1984, 1161.
(6) For recent reviews on the formation and reactivity of metal nitrenoids
formed from the reaction of metal complexes and azides, see: (a) Katsuki,
T. Chem. Lett. 2005, 34, 1304. (b) Cenini, S.; Gallo, E.; Caselli, A.;
Ragaini, F.; Fantauzzi, S.; Piangiolino, C. Coord. Chem. ReV. 2006, 250,
1234.
(7) Photolysis of NsN3 produces nitrene, which was reported to react with
styrene in the presence of a Rh(II) bis(naphthol)phosphate catalyst to
produce an aziridine in 9% yield. In the absence of hν, no aziridine was
produced. See: Mueller, P.; Baud, C.; Naegeli, I. J. Phys. Org. Chem.
1998, 11, 597.
(8) For leading reviews, see: (a) Moody, C. J. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Ley, S., Eds.; Pergamon: Oxford,
1991; Vol. 7, p 21. (b) So¨derberg, B. C. G. Curr. Org. Chem. 2000, 4,
727.
(9) For a discussion of the safety issues of processes involving azides, see:
Wiss, J.; Fleury, C.; Onken, U. Org. Process Res. DeV. 2006, 10, 349.
(10) The vinyl azides employed herein were synthesized by the condensation
of an aromatic or heteroaromatic aldehyde with methyl azidoacetate.
(11) Bra¨se, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed.
2005, 44, 5188.
though the 2-substituted naphthalene substrate required slightly
harsher conditions. While 2-substituted benzofurans, furans, and
thiophenes can be efficiently converted (entries 3 and 4), protection
of the pyrrole nitrogen with a Piv or Boc group was necessary to
access N-heterocycles 18 and 19 (entry 5). Presumably, the
protecting group must inhibit coordination of the nitrogen to the
coordinatively unsaturated rhodium catalyst.
The mechanism is believed to be similar to that proposed for
the rhodium(II)-mediated C-H bond functionalization by R-diazo
esters (Scheme 2).20,21 Following this model, initial coordination
of the dirhodium(II) carboxylate with the R-nitrogen of azide 1
produces 20,22 the presumed resting state of the catalyst.20a Upon
rhodium nitrenoid (2) formation from 20, C-N bond formation
could occur by two pathways: a concerted20 insertion of 2 into an
ortho-C-H bond (21) or a stepwise23 electrophilic aromatic
substitution via arenium ion 22. Interrogation of this step by
submission of deuterium-labeled vinyl azide 23 to reaction condi-
tions revealed a product isotope effect of 1.0 (eq 1).24 The magnitude
of the isotope effect suggests that a stepwise substitution reaction
is occurring.25 When this reaction was run to 75% completion, re-
isolation of the labeled vinyl azide showed no H/D exchange at
the labeled ortho-position, indicating that C-N bond formation
happened after the irreversible loss of N2.
(12) An alkyl azide is a key intermediate in the Roche Tamiflu synthesis. See:
Federspiel, M.; et al. Org. Process Res. DeV. 1999, 3, 266.
(13) For leading reports on the thermal version of the reaction, see: (a)
Hemetsberger, H.; Knittel, D.; Weidmann, H. Monatsh. Chem. 1970, 101,
161. (b) Moody, C. J. Stud. Nat. Prod. Chem. 1988, 1, 163. (c) Moody,
C. J.; Warrellow, G. J. J. Chem. Soc., Perkin Trans. 1 1990, 2929.
(14) Cui, Y.; He, C. Angew. Chem., Int. Ed. 2004, 43, 4210.
(15) Dauban, P.; Sanie`re, L.; Tarrade, A.; Dodd, R. H. J. Am. Chem. Soc.
2001, 123, 7707.
(16) Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.; Gotti, C. L.; Lapadula, M.;
Mangioni, E.; Cenini, S. Chem.sEur. J. 2003, 9, 249.
(17) Bach, T.; Schlummer, B.; Harms, K. Chem.sEur. J. 2001, 7, 2581.
(18) See Supporting Information for a complete listing of the reaction conditions
employed.
In conclusion, we have developed a new, mild way to access
rhodium(II) nitrenoids from azides. This methodology allows rapid
access to a variety of complex, functionalized N-heterocycles in
two steps from commercially available starting materials. Currently,
we are working to broaden our understanding of the unique
reactivity of these azidoacrylates and to apply our mechanistic
conclusions in the development of new methods that form N-
heterocycles from azides by rhodium-mediated nitrogen atom
transfer.
(19) In the absence of catalyst, no indole product was formed at this
temperature.
(20) For mechanistic and computational studies of related Rh(II)-mediated
carbene transfer reactions, see, respectively: (a) Pirrung, M. C.; Liu, H.;
Morehead, A. T., Jr. J. Am. Chem. Soc. 2002, 124, 1014. (b) Nakamura,
E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002, 124, 7181.
(21) For a study of the mechanism of the intramolecular C-H bond insertion
of aryl nitrenes, see: Murata, S.; Tsubone, Y.; Kawai, R.; Eguchi, D.;
Tomioka, H. J. Phys. Org. Chem. 2005, 18, 9.
(22) For reports of Lewis acid coordination to the R-nitrogen of an azide, see:
(a) Takeuchi, H.; Maeda, M.; Mitani, M.; Koyama, K. Chem. Commun.
1985, 287. (b) Olah, G. A.; Ramaiah, P.; Wang, Q.; Prakash, G. K. S. J.
Org. Chem. 1993, 58, 6900. (c) Wrobleski, A.; Aube´, J. J. Org. Chem.
2001, 66, 886.
Acknowledgment. We are grateful to the University of Illinois
at Chicago for their generous support. We thank Profs. David Crich,
Vladimir Gevorgyan, Martin E. Newcomb, and Duncan J. Wardrop
for insightful discussions and chemicals. We thank Dr. Dan
McElheny for assistance with NMR spectroscopy, and Dr. John
A. Anderson and Dr. Carrie Ann Crot for mass spectrometry data.
(23) For a related Rh(II)-mediated C-H functionalization reaction postulated
to occur in a stepwise fashion, see: Clark, J. S.; Dossetter, A. G.; Wong,
Y.-S.; Townsend, R. J.; Whittingham, W. G.; Russell, C. A. J. Org. Chem.
2004, 69, 3886.
(24) For related isotope studies of C-H bond functionalization by rhodium
carbenoids, see: (a) Wang, P.; Adams, J. J. Am. Chem. Soc. 1994, 116,
3296. (b) Clark, J. S.; Wong, Y.-S.; Townsend, R. J. Tetrahedron Lett.
2001, 42, 6187.
(25) For a discussion on the isotope effects observed in electrophilic aromatic
substitution, see: Perrin, C. L. J. Org. Chem. 1971, 36, 420.
Supporting Information Available: Complete ref 12, experimental
procedures, spectroscopic, and analytical data for the products (PDF).
JA072219K
9
J. AM. CHEM. SOC. VOL. 129, NO. 24, 2007 7501