10.1002/adsc.201900156
Advanced Synthesis & Catalysis
Söderbäck, Acta Chem. Scand. 1954, 8, 1851–1858;
2015; b) M. Yan, Y. Kawamata, P. S. Baran, Chem.
Rev. 2017, 117, 13230–13319; c) S. R. Waldvogel, S.
Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev.
2018, 118, 6706–6765.
e) J. S. Yadav, B. V. S. Reddy, S. Shubashree, K.
Sadashiv, Tetrahedron Lett. 2004, 45, 2951–2954; f)
T. B. Mete, T. M. Khopade, R. G. Bhat, Tetrahedron
Lett. 2017, 58, 415–418. Syntheses of biologically
active compounds via oxidation of a thiocyanate salt
with Br2: g) Z.-L. Wei, A. P. Kozikowski, J. Org.
Chem. 2003, 68, 9116–9118; h) B. Patel, C. R.
Firkin, E. W. Snape, S. L. Jenkin, D. Brown, J. G. K.
Chaffey, P. A. Hopes, C. D. Reens, M. Butters, J. D.
Moseley, Org. Process Res. Dev. 2012, 16, 447–460.
[15] Anodic oxidation of SCN– to (SCN)2: a) R. Pereiro,
A. J. Arvía, A. J. Calandra, Electrochimica Acta
1972, 17, 1723–1734. Thiocyanation of arenes using
electrogenerated (SCN)2: b) H. Kerstein, R.
Hoffmann, Ber. dtsch. Chem. Ges. A/B 1924, 57,
491–496; c) Röhm & Haas Company, Fr. Patent
702829, 1931; d) F. Fichter, P. Schönmann, Helv.
Chim. Acta 1936, 19, 1411–1415; e) G. Cauquis, G.
Pierre, C. R. Acad. Sc. Paris Ser. C 1971, 609–611;
f) P. Krishnan, V. G. Gurjar, Synth. Commun. 1992,
22, 2741–2744; g) A. Gitkis, J. Y. Becker,
Electrochimica Acta 2010, 55, 5854–5859; h) L.
Fotouhi, K. Nikoofar, Tetrahedron Lett. 2013, 54,
2903–2905; i) V. A. Kokorekin, V. L. Sigacheva, V.
A. Petrosyan, Tetrahedron Lett. 2014, 55, 4306–
4309; j) X. Zhang, C. Wang, H. Jiang, L. Sun, RSC
Adv. 2018, 8, 22042–22045.
[20] Cyanation: a) T. Susuki, K. Koyama, A. Omori, S.
Tsutsumi, Bull. Chem. Soc. Jpn. 1968, 41, 2663–
2668; b) S. Andreades, E. W. Zahnow, J. Am. Chem.
Soc. 1969, 91, 4181–4190; c) D. Hayrapetyan, R. K.
Rit, M. Kratz, K. Tschulik, L. J. Gooßen, Chem. Eur.
J. 2018, 24, 11288–11291. Arylation: d) T. Morofuji,
A. Shimizu, J. Yoshida, Angew. Chem. Int. Ed. 2012,
51, 7259–7262; e) B. Elsler, D. Schollmeyer, K. M.
Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem.
Int. Ed. 2014, 53, 5210–5213; f) L. Schulz, M.
Enders, B. Elsler, D. Schollmeyer, K. M. Dyballa, R.
Franke, S. R. Waldvogel, Angew. Chem. Int. Ed.
2017, 56, 4877–4881. C–O bond formation: g) B.
Belleau, N. L. Weinberg, J. Am. Chem. Soc. 1963,
85, 2525–2526; h) S. D. Ross, M. Finkelstein, R. C.
Petersen, J. Am. Chem. Soc. 1964, 86, 4139–4143; i)
T. Tajima, Y. Kishi, A. Nakajima, Electrochimica
Acta 2009, 54, 5959–5963. C–N bond formation: j)
Y. Yu, Y. Yuan, H. Liu, M. He, M. Yang, P. Liu, B.
Yu, X. Dong, A. Lei, Chem. Commun. 2019, DOI
10.1039/C8CC09899A; C–S bond formation: k) P.
Wang, S. Tang, P. Huang, A. Lei, Angew. Chem. Int.
Ed. 2017, 56, 3009–3013.
[21] a) H.-L. Qi, D.-S. Chen, J.-S. Ye, J.-M. Huang, J.
Org. Chem. 2013, 78, 7482–7487; b) J. Suzuki, N.
Shida, S. Inagi, T. Fuchigami, Electroanalysis 2016,
28, 2797–2801; c) J. Suzuki, M. Tanigawa, S. Inagi,
T. Fuchigami, ChemElectroChem 2016, 3, 2078–
2083.
[16] For regiospecific substitutions of boronic acids, see:
a) C. Zhu, J. R. Falck, Adv. Synth. Catal. 2014, 356,
2395–2410. Examples of ipso-sulfurations of
arylboron derivatives: b) T. Wizemann, H. Müller, D.
Seybold, K. Dehnicke, J. Organomet. Chem. 1969,
20, 211–217; c) S. Kerverdo, M. Gingras,
Tetrahedron Lett. 2000, 41, 6053–6057; d) Q. Wang,
[22] G. A. Bowmaker, P. A. Kilmartin, G. A. Wright, J.
Solid State Electrochem. 1999, 3, 163–171.
X.-Y. Tang, M. Shi, Angew. Chem. Int. Ed. 2016, 55, [23] N. L. Weinberg, H. R. Weinberg, Chem. Rev. 1968,
10811–10815.
68, 449–523.
[17] For reviews on organoboron chemistry, see: a) N.
Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–
2483; b) I. A. I. Mkhalid, J. H. Barnard, T. B.
Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev.
2010, 110, 890–931; c) A. J. J. Lennox, G. C. Lloyd-
Jones, Chem. Soc. Rev. 2014, 43, 412–443; d) L. Xu,
G. Wang, S. Zhang, H. Wang, L. Wang, L. Liu, J.
Jiao, P. Li, Tetrahedron 2017, 73, 7123–7157.
[18] a) N. Sun, H. Zhang, W. Mo, B. Hu, Z. Shen, X. Hu,
Synlett 2013, 24, 1443–1447; b) N. Sun, L. Che, W.
Mo, B. Hu, Z. Shen, X. Hu, Org. Biomol. Chem.
2015, 13, 691–696.
[24] Rapid decomposition of (SCN)2 by nucleophilic
attack of water likely prevents the thiocyanation. For
a mechanistic study of the decomposition, see: P.
Nagy, K. Lemma, M. T. Ashby, Inorg. Chem. 2007,
46, 285–292.
[25] G. Berionni, B. Maji, P. Knochel, H. Mayr, Chem.
Sci. 2012, 3, 878–882.
[26] Syntheses of aryl trifluoroborates: a) A. J. J. Lennox,
G. C. Lloyd-Jones, Angew. Chem. Int. Ed. 2012, 51,
9385–9388; b) J.-L. Shih, T. S. Nguyen, J. A. May,
Angew. Chem. Int. Ed. 2015, 54, 9931–9935.
[27] a) L. V. Myznikov, A. Hrabalek, G. I. Koldobskii,
Chem. Heterocycl. Compd. 2007, 43, 1–9; b) C.
Ballatore, D. M. Huryn, A. B. Smith,
ChemMedChem 2013, 8, 385–395.
[19] a) O. Hammerich, B. Speiser, Organic
Electrochemistry, Fifth Edition: Revised and
Expanded, Taylor & Francis Group, Boca Raton,
5
This article is protected by copyright. All rights reserved.