Published on Web 12/23/2006
Formation of Water-Dispersible Nanotubular Graphitic
Assembly Decorated with Isothiouronium Ion Groups and Its
Supramolecular Functionalization
Guanxin Zhang,† Wusong Jin,† Takanori Fukushima,*,†,‡ Atsuko Kosaka,†
Noriyuki Ishii,§ and Takuzo Aida*,†,‡
Contribution from the ERATO-SORST Nanospace Project, Japan Science and Technology
Agency (JST), National Museum of Emerging Science and InnoVation, 2-41 Aomi, Koto-ku,
Tokyo 135-0064, Japan, Department of Chemistry and Biotechnology, School of Engineering,
and Center for NanoBio Integration, The UniVersity of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
113-8656, Japan, and Biological Information Research Center, National Institute of AdVanced
Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki
305-8566, Japan
Received October 5, 2006; E-mail: fukushima@nanospace.miraikan.jst.go.jp; aida@macro.t.u-tokyo.ac.jp
Abstract: A newly designed Gemini-shaped hexabenzocoronene amphiphile (1), carrying an isothiouronium
ion-appended side chain, self-assembles in CH2Cl2 to form a nanotubular object, whose graphitic wall is
densely covered by a positively charged molecular layer of isothiouronium ion pendants. The graphitic
nanotube can be dispersed uniformly in aqueous media owing to effective hydration as well as electrostatic
repulsion. Post-supramolecular functionalization of the nanotube surface is possible, without disruption of
the tubular morphology, by taking advantage of a specific interaction of the isothiouronium ion pendants
with oxoanion guests. Mixing with sodium poly(4-styrenesulfonate) results in wrapping of the nanotube,
while complexation with an electron-accepting oxoanion such as anthraquinone carboxylate allows
photoinduced electron transfer from the graphitic wall to the bound guest molecules.
Introduction
Self-assembled π-electronic nano-objects1 with post-func-
tionalizable surface groups via noncovalent interactions are
expected to serve as potential scaffolds for the ultimate
molecular design of finely integrated electronic and optoelec-
tronic materials.2 To achieve this goal, the nano-objects must
be sufficiently robust to allow the accommodation of a guest
without structural disruption. Furthermore, proper choice of
surface groups that enable selective noncovalent interactions is
essential. However, such π-electronic molecular assemblies that
fulfill the above requisites are very rare.3 Here, we report
successful formation of a hexa-peri-hexabenzocoronene (HBC)
graphitic nanotube4 with isothiouronium ion surface pendants
(Figure 1) that can be functionalized without disruption by
oxoanion guests via a specific hydrogen-bonding interaction.5,6
HBC7 is one of the representatives of polycyclic aromatic
Figure 1. Schematic illustrations of (a) the graphitic nanotube from HBC
1 and (b) its bilayer wall (C12; dodecyl chain), and (c) a possible binding
mechanism for the complexation with AQ.
hydrocarbons that attracts considerable attention, since they
tend to form columnar assemblies important for electronic
and optoelectronic applications.8 Mu¨llen and co-workers are
(4) (a) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura,
T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481-
1483. (b) Jin, W.; Fukushima, T.; Niki, M.; Kosaka, A.; Ishii, N.; Aida, T.
Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10801-10806. (c) Jin, W.;
Fukushima, T.; Kosaka, A.; Niki, M.; Ishii, N.; Aida, T. J. Am. Chem.
Soc. 2005, 127, 8284-8285. (d) Motoyanagi, J.; Fukushima, T.; Ishii, N.;
Aida, T. J. Am. Chem. Soc. 2006, 128, 4220-4221. (e) Motoyanagi, J.;
Fukushima, T.; Kosaka, A.; Ishii, N.; Aida, T. J. Polym. Sci., Part A:
Polym. Chem. 2006, 44, 5120-5127. (f) Yamamoto, T.; Fukushima, T.;
Yamamoto, Y.; Kosaka, A.; Jin, W.; Ishii, N.; Aida, T. J. Am. Chem. Soc.
2006, 128, 14337-14340. (g) Yamamoto, Y.; Fukushima, T.; Jin, W.;
Kosaka, A.; Hara, T.; Nakamura, T.; Saeki, A.; Seki, S.; Tagawa, S.; Aida,
T. AdV. Mater. 2006, 18, 1297-1300.
† JST.
‡ The University of Tokyo.
§ AIST.
(1) For recent reviews, see: (a) Simpson, C. D.; Wu, J.; Watson, M. D.; Mu¨llen,
K. J. Mater. Chem. 2004, 14, 494-504. (b) Wu¨rthner, F. Chem. Commun.
2004, 1564-1579. (c) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.;
Schenning, A. P. H. J. Chem. ReV. 2005, 105, 1491-1546. (d) Elemans, J.
A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. AdV. Mater.
2006, 18, 1251-1266.
(2) For recent reviews, see: (a) Carroll, R. L.; Gorman, C. B. Angew. Chem.,
Int. Ed. 2002, 41, 4378-4400. (b) Schenning, A. P. H. J.; Meijer, E. W.
Chem. Commun. 2005, 3245-3258.
(3) Praveen, V. K.; George, S. J.; Varghese, R.; Vijayakumar, C.; Ajayaghosh,
A. J. Am. Chem. Soc. 2006, 128, 7542-7550.
(5) For recent reviews, see: (a) Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion
Receptor Chemistry; The Royal Society of Chemistry: Cambridge, 2006.
(b) Mart´ınez-Ma´n˜ez, R.; Sanceno´n, F. Chem. ReV. 2003, 103, 4419-4476.
(c) Best, M. D.; Tobey, S. L.; Anslyn, E. V. Coord. Chem. ReV. 2003,
240, 3-15.
9
10.1021/ja0671518 CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 719-722
719