G. Cravotto et al. / Tetrahedron: Asymmetry 17 (2006) 3070–3074
3073
J = 7), 0.88 (3H, s). 13C NMR (100 MHz, DMSO-d6) 172.0
(CO), 152.9 (CO), 147.1 (C), 138.2 (C), 130.0 (CH), 128.2 (C),
128.0 (CH), 125.4 (CH), 125.2 (CH), 123.0 (C), 121.0 (CH2),
119.1 (CH), 116.5 (C), 80.0 (C), 78.5 (CH), 78.0 (C), 50.5
(CH), 43.0 (CH2), 39.4 (C) 38.7 (CH2), 34.5 (CH2), 30.6 (CH),
28.7 (CH3), 27.6 (CH2), 27.5 (CH3), 25.6 (CH3), 22.2 (CH3).
Compound 10, mp 221–223 ꢁC (MeOH); Rf 0.11 (hexane/t-
3. Conclusion
In conclusion, with the present results we achieved the first
enantioselective synthesis of natural convolutamydine A 1,
and established beyond any doubt that (+)-1 has an (R)-
configuration.
1
BuOMe, 3:2); H NMR (400 MHz, DMSO-d6) 10.62 (1H, br
s), 7.35 (1H, d, J = 1.5), 6.93 (1H, d, J = 1.5), 5.20 (1H, m),
4.97 (1H, dd, J = 17, 2), 4.90 (1H, dd, J = 10, 2), 3.02 (1H,
dd, J = 13, 7.5), 2.55 (1H, dd, J = 13, 7.5); 13C NMR
(100 MHz, DMSO-d6) 178.6 (C), 146.2 (C), 131.5 (CH), 129.1
(C), 128.0 (CH), 123.2 (C), 120.5 (C), 120.3 (CH2), 112.7
(CH), 77.8 (C), 41.0 (CH2). Compound 11, mp 192 ꢁC (dec)
(CH2Cl2/hexane); Rf 0.36 (PE/AcOEt, 4:1); 1H NMR
(400 MHz, CDCl3) 7.61 (1H, br s), ca. 7.50 (5H, m), 7.27
(1H, d, J = 1.5), 6.93 (1H, d, J = 1.5), 5.31 (1H, ddt, J = 17.1,
9.8, 7.2), 5.08 (1H, J = 17.1, 1.8, 1.1), 4.99 (1H, J = 9.8, 1.8,
1.1); 4.86 (1H, s), 3.33 (3H, s), 3.19 (1H, dd, J = 13.2, 7.2),
2.78 (1H, dd, J = 13.2, 7.2). Compound 12, colourless glass,
Acknowledgement
Financial support from Regione Piemonte (Ricerca
Scientifica Applicata 2004) is gratefully acknowledged.
References
1. (a) Faulkner, D. J. Nat. Prod. Rep. 1994, 11, 355; Faulkner,
D. J. Nat. Prod. Rep. 1995, 12, 223; Faulkner, D. J. Nat.
Prod. Rep. 1996, 13, 75; (b) Gribble, G. W. Acc. Chem. Res.
1998, 31, 141; (c) Goering, B. K. Ph.D. Dissertation, Cornell
University, 1995.
2. (a) Kamano, Y.; Zhang, H.-P.; Ichihara, Y.; Kizu, H.;
Komiyama, K.; Pettit, G. R. Tetrahedron Lett. 1995, 36,
2783; (b) Zhang, H.-P.; Kamano, Y.; Ichihara, Y.; Kizu, H.;
Komiyama, K.; Itokawa, H.; Pettit, G. R. Tetrahedron 1995,
51, 5523; (c) Kamano, Y.; Kotake, A.; Hashima, H.;
Hayakawa, I.; Hiraide, H.; Zhang, H.-P.; Kizu, H.; Komi-
yama, K.; Hayashi, M.; Pettit, G. R. Collect. Czech.
Commun. 1999, 64, 1147.
1
Rf 0.25 (PE/AcOEt, 4:1); H NMR (400 MHz, CDCl3) 7.66
(1H, br s), 7.45–7.30 (5H, m), 7.16 (1H, d, J = 1.5), 6.92 (1H,
d, J = 1.5), 5.30 (1H, ddt, J = 17.1, 9.9, 7.2), 5.08 (1H,
J = 17.1, 1.8, 1.1), 5.00 (1H, J = 9.8, 1.8, 1.1); 4.86 (1H, s),
3.42 (3H, s), 3.15 (1H, dd, J = 13.2, 7.2), 2.78 (1H, dd,
J = 13.2, 7.2). 13C NMR (100 MHz, CDCl3) 174.2 (C), 169.0
(C), 143.6 (C), 135.4 (C), 128.9 (CH), 128.7 (CH), 128.6 (CH),
127.6 (CH), 123.9 (C), 121.3 (C), 118.4 (CH2), 112.8 (CH),
81.7 (CH), 80.8 (C), 57.5 (CH3), 37.3 (CH2).
11. For application of (ꢀ)-8-phenylmenthol to the asymmetric
reactions of a-oxocarboxylates, see Chen, M.-Y.; Fang, J.-M.
J. Chem. Soc., Perkin Trans. 1 1993, 1737, and references
cited therein; See, also Runsink, J.; Koch, H.; Nehrings, A.;
Scharf, H.-D.; Nowack, E.; Hahn, T. J. Chem. Soc., Perkin
Trans. 2 1988, 1737.
3. Pettit, G. R.; Kamano, Y.; Aoyagi, R.; Herald, C. L.;
Doubek, D. L.; Schmidt, J. M.; Rudloe, J. J. Tetrahedron
1985, 41, 985.
4. Miah, S.; Moody, C. J.; Richards, I. C.; Slawin, A. M. Z. J.
Chem. Soc., Perkin Trans. 1 1997, 2404.
12. Fioravanti, S.; Morreale, A.; Pellicani, L.; Tardella, P. A.
Tetrahedron Lett. 2003, 44, 3031.
5. Kawasaki, T.; Nagaoka, M.; Satoh, T.; Okamoto, A.; Ukon,
R.; Ogawa, A. Tetrahedron 2004, 60, 3493.
13. The following reaction conditions were unsuccessful: (1)
preactivation of 8 with oxalyl chloride, CH2Cl2; (2) in situ
activation with CDI, CH2Cl2, py(cat); (3) preactivation of 8
with cyanuric fluoride, CH2Cl2; (4) 1,3-diisopropylcarbodi-
mide (DIPC), DMAP, CH2Cl2; (5) Otera’s distannoxane-
promoted transesterification; (6) BOP, DIPEA, DMAP,
DMF.
14. See, for example: Basel, Y.; Hassner, A. J. Org. Chem. 2000,
65, 6368.
15. See, for example: Ward, J. L.; Beale, M. H. Phytochemistry
1995, 38, 811.
6. (a) Jnaneshwar, G. K.; Deshpande, V. H. J. Chem. Res. (S)
1999, 632; (b) Garden, S. J.; Torres, J. C.; Ferreira, A. A.;
Silva, R. B.; Pinto, A. C. Tetrahedron Lett. 1997, 38, 1501.
7. Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Brox-
terman, Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418.
8. Nakamura, T.; Shirokawa, S.; Hosokawa, S.; Nakazaki, A.;
Kobayashi, S. Org. Lett. 2006, 8, 677.
9. Takayama, H.; Shimizu, T.; Sada, H.; Haada, Y.; Kitajima,
M.; Aimi, N. Tetrahedron 1999, 55, 6941.
10. Analytical data. Compound 6, mp 128–131 ꢁC (CH2Cl2), Rf
0.75 (hexane/t-BuOMe, 3:2), 1H NMR (400 MHz, CDCl3)
8.36 (1H, d, J = 1.5), 7.64 (1H, d, J = 1.5), 1.65 (9H, s), 13C
NMR (100 MHz, CDCl3) 177.2 (C), 154.5 (C), 150.3 (C),
148.3 (C), 134.1 (C), 133.2 (CH), 122.3 (C) 119.6 (CH), 116.7
(C), 28.4 (CH3). Compound 7, mp 88–91 ꢁC (hexane–
CH2Cl2), Rf 0.76 (hexane/t-BuOMe, 4:1); 1H NMR
(400 MHz, CDCl3) 8.49 (1H, d, J = 1.8), 8.09 (1H, br s),
7.44 (1H, d, J = 1.8), 7.18 (2H, dd, J = 8.7, 4.3), 4.99 (1H, dt;
J = 10.8, 4.4), 2.18 (2H, m), 1.54 (9H, s), 1.42 (3H, s), 1.28
(3H, s), 0.91 (3H, d, J = 7.0); 13C NMR (100 MHz, CDCl3)
188.3 (C), 160.7 (C), 152.2 (C), 150.6 (C), 141.6 (C), 129.7
(CH), 128.4 (CH), 128.4 (CH), 126.0 (CH), 125.9 (CH), 122.8
(C), 122.6 (C), 122.6 (C), 82.5 (C), 79.1 (CH), 54.6 (CH), 40.8
(CH2), 40.4 (C), 35.3 (CH2), 31.9 (CH), 28.4 (CH3), 27.5
(CH2), 24.5 (CH3), 22.4 (CH3). Compound 9, colourless thick
oil, Rf 0.62 (hexane/t-BuOMe, 9:1); 1H NMR (400 MHz,
CDCl3) 8.95 (1H, br s), 8.41 (1H, d, J = 2), 7.32 (1H, d,
J = 2), 7.26 (6H, m), 5.11 (1H, d, J = 16), 5.10 (1H, d,
J = 11), 4.82 (1H, dd, J = 11, 4), 3.02 (1H, dd, J = 14, 6), 2.87
(1H, dd, J = 14, 8), 1.59 (9H, s), 1.09 (3H, s), 0.93 (3H, d,
16. For a review on the chemistry of isatins and bioactive
derivatives, see: Da Silva, J. F. M.; Garden, S. J.; Pinto, A. C.
J. Braz. Chem. Soc. 2001, 273.
17. (a) Ohta, T.; Hasoi, A.; Kimura, T.; Nozoe, S. Chem. Lett.
1987, 2091; (b) Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J.
Org. Chem. 1983, 48, 2424.
18. Compound 6 was prepared in virtually quantitative yields by
reacting 4,6-dibromoisatin (Shepherd, R. G. J. Org. Chem.
1947, 12, 275) with BOC2O in THF in the presence of DMAP
(cat) at room temperature for 5 h (Wille, G.; Steglich, W.
Synthesis 2001, 5, 759).
19. Schoenfelder, A.; Mann, A. Synth. Commun. 1990, 20, 2585.
20. Kolasa, T.; Miller, M. J. J. Org. Chem. 1990, 55, 1711.
21. Schwesinger, R.; Willaredt, J.; Schlemper, H.; Keller, M.;
Schimitt, D.; Fritz, H. Chem. Ber. 1994, 127, 2435.
22. Moyano, A.; Charbonnier, F.; Greene, A. E. J. Org. Chem.
1987, 52, 2919.
23. For recent reviews of allylmetal additions, see: (a) Denmark,
S. E.; Fu, J. Chem. Rev. 2003, 103, 2763; (b) Roush, W. R.;
Chemler, C. R. In Modern Carbonyl Chemistry; Otera, J., Ed.;