C O M M U N I C A T I O N S
Scheme 1. Proposed Mechanism for Carboxylative Diyne
Cyclization
Acknowledgment. We thank the NSF (Grant CHE 518559) and
Amgen for financial support of this research, Princeton University
for a Harold W. Dodds Fellowship (H.K.), and Merck for graduate
support (S.D.G.). We also thank Jimin Kim and Dr. Doug Ho for
the X-ray analysis of 2a.
Supporting Information Available: Experimental details (pdf and
cif). This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) For reviews, see; (a) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed.
2006, 45, 2176. (b) Varela, J. A.; Saa´, C. Chem.sEur. J. 2006, 12, 6450.
(c) Wakatsuki, Y. J. Organomet. Chem. 2004, 689, 4092. (d) Trost, B.
M. Acc. Chem. Res. 2002, 35, 695. (e) McDonald, F. E. Chem.sEur. J.
1999, 5, 3103.
Several observations made in a set of further experiments are
noteworthy (eq 4-6). When monobenzoate 2b was resubjected to
the standard conditions, only bisbenzoate 2c was generated over a
prolonged reaction time (ca. 10%, 48 h) (eq 4). This result renders
the possibility of 2b as an intermediate of the reaction highly
unlikely, thereby excluding the mechanism involving an enyne
cycloisomerization of 2b to 2a.11 The present addition-cyclization
proved infeasible with the methyl-substituted diyne 1a. Interestingly,
the reaction of a 1:1:2 mixture of 1, 1a, and benzoic acid gave
only a 20% yield of 2a with nearly quantitative recovery of
unreacted 1a, indicating possible deactivation of the catalyst by 1a
(eq 5). Finally, the formation of (E)-isomers as the products appears
to be kinetic in origin, since no isomerization occurs under the
reaction conditions (eq 6).
(2) For examples of the addition of various nucleophiles, carboxylic acids:
(a) Doucet, H.; Ho¨fer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc.,
Chem. Commun. 1993, 850. (b) Doucet, H.; Martin-Vaca, B.; Bruneau,
C.; Dixneuf, P. H. J. Org. Chem. 1995, 69, 7247. Carbamate, see: (c)
Sasaki, Y.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1986, 790.
Intermolecular addition of alcohols: (d) Trost, B. M.; Dyker, G.; Kulawiec,
R. J. J. Am. Chem. Soc. 1990, 112, 7809. (e) Gemel, C.; Trimmel, G.;
Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.; Kirchner, K. Orga-
nometallics 1996, 15, 3998. Intramolecular addition of alcohols: (f) Trost,
B. M.; Flygare, J. A. J. Org. Chem. 1994, 59, 1078. (g) McDonald, F. E.;
Connolly, C. B.; Gleason, M. M.; Towne, T. B.; Treiber, K. D. J. Org.
Chem. 1993, 58, 6952. Hydration: (h) Tokunaga, M.; Wakatsuki, Y.
Angew. Chem., Int. Ed. 1998, 37, 2867. (i) Alvarez, P.; Bassetti, M.;
Gimeno, J.; Mancini, G. Tetrahedron Lett. 2001, 42, 8467. (j) Grotjahn,
D. B.; Lev, D. A. J. Am. Chem. Soc. 2004, 126, 12232. Amine: (k)
McDonald, F. E.; Chatterjee, A. K. Tetrahedron Lett. 1997, 38, 7687.
Hydrazine: (l) Fukumoto, Y.; Dohi, T.; Masaoka, H.; Chatani, N.; Murai,
S. Oraganometallics 2002, 21, 3845. Stablized carbanions: (m) McDonald,
F. E.; Olson, T. C. Tetrahedron Lett. 1997, 38, 7691. Silyl enol ethers:
(n) Maeyama, K.; Iwasawa, N. J. Am. Chem. Soc. 1998, 120, 1928.
Phosphine: (o) Je´roˆme, F.; Monnier, F.; Lawicka, H.; De´rien, S.; Dixneuf,
P. H. Chem. Commun. 2003, 696.
(3) Alkyne dimerization: (a) Bianchini, C.; Peruzzini, M.; Zanobini, F.;
Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453. (b)
Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J.
Am. Chem. Soc. 1991, 113, 9604. (c) Fryzuk, M. D.; Huang, L.; McManus,
N. T.; Paglia, P.; Rettig, S. J.; White, G. S. Organometallics 1992, 11,
2979. (d) Braun, T.; Meuer, P.; Werner, H. Organometallics 1996, 15,
4075. (e) Slugovc, C.; Mereiter, K.; Zobetz, E.; Schmid, R.; Kirchner, K.
Organometallics 1996, 15, 5275. Alkyne-alkene coupling: (f) Murakami,
M.; Ubukata, M.; Ito, Y. Tetrahedron Lett. 1998, 39, 7361. (g) Murakami,
M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720. (h) Bigeault, J.; Giordano,
L.; Buono, G. Angew. Chem., Int. Ed. 2005, 44, 4753.
(4) For a review, see: (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R.
J. Chem. ReV. 1996, 96, 635. For examples of addition/cyclization of 1,6-
diynes, see, hydrostannanes: (b) Lautens, M.; Smith, N. D.; Ostrovsky,
D. J. Org. Chem. 1997, 62, 8970. Stannylsilanes: (c) Greau, S.; Radetich,
B. N.; Rajanbabu, T. V. J. Am. Chem. Soc. 2000, 122, 8579. Borylsi-
lanes: (d) Onozawa, S.; Hatanaka, Y.; Tanaka, M. Chem. Commun. 1997,
1229. Borylstannanes: (e) Onozawa, S.; Hatanaka, Y.; Choi, N.; Tanaka,
M. Organometallics 1997, 16, 5389. Hydrogen: (f) Jang, H. Y.; Krische,
M. J. J. Am. Chem. Soc. 2004, 126, 7875. Hydrogen equivalent: (g) Trost,
B. M.; Lee, D. C. J. Am. Chem. Soc. 1988, 110, 7255. Hydrosilylation:
(h) Ojima, I.; Zhu, J.; Viadal, E. S.; Kass, D. F. J. Am. Chem. Soc. 1998,
120, 6690. (i) Madine, J. W.; Wang, X.; Widenhoefer, R. A. Org. Lett.
2001, 3, 385. Hydration: (j) Trost, B. M.; Rudd, M. T. J. Am. Chem.
Soc. 2003, 125, 11516.
(5) (a) Kim, H.; Lee, C. J. Am. Chem. Soc. 2005, 127, 10180. (b) Chen, Y.;
Ho, D.; Lee, C. J. Am. Chem. Soc. 2005, 127, 12184. (c) Kim, H.; Lee,
C. J. Am. Chem. Soc. 2006, 128, 6336.
(6) Goble, S. D. Ph.D. Dissertation, Princeton University, NJ, Sept. 2006.
(7) Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706.
(8) The structure of 2a has been determined by an X-ray crystallographic
analysis. See Supporting Information for details.
While further studies are currently in progress, a mechanistic
proposal may be advanced on the basis of the observations made
thus far (Scheme 1). Upon formation of ruthenium vinylidene A,
the pendent alkyne is coordinated to the metal center. While it may
not or may only reversibly undergo a [2+2] cycloaddition to B,
addition of the benzoate anion induces cyclization of A to C or D.
Given the exclusive generation of 2a in (E)-configuration, the outer-
(path a) rather than innersphere (path b) nucleophlic attack appears
to be favored, a type of process reminiscent of the nucleophile-
promoted electrophilic cyclization of alkynes.12 The final protio-
demetalation then furnishes the product and turns the catalyst over.
Alternatively, C may be formed via R-migration of F which could
arise from vinyl ruthenium E.13
In summary, we have developed a ruthenium-catalyzed tandem
addition-cyclization of 1,6-terminal diynes and carboxylic acids.
In contrast to typical metal-mediated processes of diynes that give
five-membered-ring products, the reaction provides six-membered-
carbo- and heterocyclic systems decorated with useful functional
groups.14 Also proposed here is an unprecedented anti attack of a
nucleophile on a π-alkyne runthenium vinylidene complex. This
new reactivity is anticipated to open up new opportunities for further
development of catalytic alkyne functionalization.
(9) For comprehensive screening results, see Supporting Information.
(10) The reaction of substrates with an ether tether gave a complex mixture of
intractable products presumably due to the formation of allenylidene and/
or alkenyl alkylidene complexes. For examples, see ref 1a and (b)
Castarlenas, R.; Eckert, M.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2005,
44, 2576. The reactions of 1,5- and 1,7-diynes did not give the cyclized
product, but led to alkyne dimerization after 48 h (see ref 3).
(11) See ref 5a and: Grigg, R.; Stevenson, P.; Worakun, T. Tetrahedron 1988,
44, 4967.
(12) Overman, L. E.; Sharp, M. J. J. Am. Chem. Soc. 1988, 110, 612.
(13) This pathway involving the transient formation of F was suggested by a
reviewer. The possible intermediacy of G and H cannot be excluded at
the present time. The deuterium labeling experiments were inconclusive
because of significant scrambling. For details, see Supporting Information.
(14) For examples showing the product utility, see Supporting Information.
JA067336E
9
J. AM. CHEM. SOC. VOL. 129, NO. 5, 2007 1031