10.1002/chem.201903906
Chemistry - A European Journal
COMMUNICATION
Commun. 2015, 6, 5933; n) M. Börjesson, T. Moragas, D. Gallego, R.
Martin, ACS Catal. 2016, 6, 6739; o) S. Wang, G. Du, C. Xi, Org. Biomol.
Chem. 2016, 14, 3666; p) Y. Y. Gui, W. J. Zhou, J. H. Ye, D. G. Yu,
ChemSusChem 2017, 10, 1337; q) Z. Zhang, T. Ju, J. H. Ye, D. G. Yu,
Synlett 2017, 28, 741; r) Y. G. Chen, X. T. Xu, K. Zhang, Y. Q. Li, L. P.
Zhang, P. Fang, T. S. Mei, Synthesis 2018, 02, 35; s) A. Tortajada, F. Juliá-
Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed.
2018, 57, 15948; Angew. Chem. 2018, 130, 16178; t) J. R. Cabrero-
Antonino, R. Adam Ortiz, M. Beller, Angew. Chem. Int. Ed.
10.1002/anie.201810121; Angew. Chem.10.1002/ange.201810121; u) C.
S. Yeung, Angew. Chem. Int. Ed. 2019, 58, 5492; Angew. Chem. 2019,
131, 5546.
[2] For selected examples on the reduction of CO2 to form carboxylic acid, see:
a) C. T. Estorach, A. Orejon, N. Ruiz, A. M. Masdeu-Bulto, G. Laurenczy,
Eur. J. Inorg. Chem. 2008, 3524; b) C. M. Williams, J. B. Johnson, T. Rovis,
J. Am. Chem. Soc. 2008, 130, 14936; c) J. Takaya, N. Iwasawa, J. Am.
Chem. Soc. 2008, 130, 15254; d) M. D. Greenhalgh, S. P. Thomas, J. Am.
Chem. Soc. 2012, 134, 11900; e) P. Shao, S. Wang, C. Chen, C. Xi, Org.
Lett. 2016, 18, 2050; f) M. Gaydou, T. Moragas, F. Julia-Hernandez, R.
Martin, J. Am. Chem. Soc. 2017, 139, 12161; g) L. Dian, D. S. Müller, I.
Marek, Angew. Chem. Int. Ed. 2017, 56, 6783; Angew. Chem. 2017, 129,
6887; h) T. Ju, Q. Fu, J. H. Ye, Z. Zhang, L. L. Liao, S. S. Yan, X. Y. Tian,
S. P. Luo, J. Li, D. G. Yu, Angew. Chem. Int. Ed. 2018, 57, 13897; Angew.
Chem. 2018, 130, 14093. i) Q. Y. Meng, S. Wang, G. S. Huff, B. Konig, J.
Am. Chem. Soc. 2018, 140, 3198; For selected examples on the reduction
of CO2 to form esters, see: j) L. Gonzalez-Sebastian, M. Flores-Alamo, J.
J. Garcia, Organometallics 2012, 31, 8200; k) L. Wu, Q. Liu, I. Fleischer, R.
Jackstell, M. Beller, Nat. Commun. 2014, 5, 3091; l) X. Zhang, C. Shen, C.
Xia, X. Tian, L. He, Green Chem. 2018, 20, 5533. For selected examples
on the reduction of CO2 to form higher alcohols, see: m) K.-i. Tominaga, Y.
Sasaki, Catal. Commun. 2000, 1, 1; n) K.-i. Tominaga, Y. Sasaki, J. Mol.
Catal. A: Chem. 2004, 220, 159; o) M. Ali, A. Gual, G. Ebeling, J. Dupont,
ChemCatChem 2014, 6, 2224; p) Q. Liu, L. Wu, I. Fleischer, D. Selent, R.
Franke, R. Jackstell, M. Beller, Chem. Eur. J. 2014, 20, 6888; q) Y. Tani, K.
Kuga, T. Fujihara, J. Terao, Y. Tsuji, Chem. Commun. 2015, 51, 13020; r)
X. Zhang, X. Tian, C. Shen, C. Xia, L. He, ChemCatChem 2019, 11, 1986
[3] For selected reviews, see: a) X. B. Lu, W. M. Ren, G. P. Wu, Acc. Chem.
Res. 2012, 45, 1721; b) N. Kielland, C. J. Whiteoak, A. W. Kleij, Adv. Synth.
Catal. 2013, 355, 2115-2138; c) J. Vaitla, Y. Guttormsen, J. K. Mannisto, A.
Nova, T. Repo, A. Bayer, K. H. Hopmann, ACS Catal. 2017, 7, 7231.
[4] M. Takimoto, Y. Nakamura, K. Kimura, M. Mori, J. Am. Chem. Soc. 2004,
126, 5956.
Figure 1. Control experiments (a,b) and proposed mechanism (c)
In summary, we have developed a Cu(I)/diphosphine catalyzed
asymmetric reductive hydroxymethylation of 1, 1-disubstituted
allenes with CO2 and hydrosilane, affording a variety of chiral
homoallylic alcohols bearing an all-carbon quaternary chiral
center in high yields and good enantioselectivities. Synthetic
utilities of the protocol were demonstrated in several
transformations of the product 2a. Overall, we hope this
application of CO2 in the construction of quaternary chiral center
would stimulate further development of catalytic asymmetric
catalysis using CO2 as a C1 component in organic synthesis.
Acknowledgements
[5] Y. Y. Gui, N. Hu, X. W. Chen, L. L. Liao, T. Ju, J. H. Ye, Z. Zhang, J. Li, D.
G. Yu, J. Am. Chem. Soc. 2017, 139, 17011.
[6] S. Kawashima, K. Aikawa, K. Mikami, Eur. J. Org. Chem. 2016, 3166.
[7] For selected reviews on the enantioselective formation of all-carbon
quaternary centers, see: a) M. Shimizu, Angew. Chem. Int. Ed. 2011, 50,
5998; Angew. Chem. 2011, 123, 6122; b) A. Y. Hong, B. M. Stoltz, Eur. J.
Org. Chem. 2013, 2013, 2745; c) I. Marek, Y. Minko, M. Pasco, T. Mejuch,
N. Gilboa, H. Chechik, J. P. Das, J. Am. Chem. Soc. 2014, 136, 2682; d)
Y. Minko, I. Marek, Chem. Commun. 2014, 50, 12597; e) K. W. Quasdorf,
L. E. Overman, Nature 2014, 516, 181.
We thank the financial support from Ministry of Science and
Technology of China (2016YFA0202900), the National Natural
Science Foundation of China (21572254, 21790333, 21772221),
and CAS (XDB20000000, QYZDY-SSW-SLH012).
Keywords: CO2 transformation · quaternary center · allene ·
copper · asymmetric catalysis
[8] a) F. Meng, H. Jang, B. Jung, A. H. Hoveyda, Angew. Chem. Int. Ed. 2013,
52, 5046; Angew. Chem. 2013, 125, 5150; b) F. Meng, F. Haeffner, A. H.
Hoveyda, J. Am. Chem. Soc. 2014, 136, 11304; c) Y. Tani, T. Fujihara, J.
Terao, Y. Tsuji, J. Am. Chem. Soc. 2014, 136, 17706; d) X. Li, F. Meng, S.
Torker, Y. Shi, A. H. Hoveyda, Angew. Chem. Int. Ed. 2016, 55, 9997;
Angew. Chem. 2016, 128, 10151; e) T. Fujihara, A. Sawada, T. Yamaguchi,
Y. Tani, J. Terao, Y. Tsuji, Angew. Chem. Int. Ed. 2017, 56, 1539; Angew.
Chem. 2017, 129, 1561; f) C. Li, R. Y. Liu, L. T. Jesikiewicz, Y. Yang, P.
Liu, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 5062; g) R. Y. Liu, Y.
Zhou, Y. Yang, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 2251.
[9] For selected examples, see: a) K. R. Roesch, R.C. Larock, J. Org. Chem.
2002, 67, 86; b) D. J. Wardrop, S. L. Waidyarachchi, Nat. Prod. Rep. 2010,
27, 1431; c) Y. Wu, B. Zhou, ACS Catal. 2017, 7, 2213; d) J. M. Wood, D.
P. Furkert, M. A. Brimble, Nat. Prod. Rep. 2019, 36, 289.
[1] For selected books, see: a) Aresta, M. Carbon Dioxide as Chemical
Feedstock; Wiley-VCH: Weinheim, 2010; b) Centi, G.; Perathoner, S.
Green Carbon Dioxide: Advances in CO2 Utilization; Wiley-VCH: Weinheim,
2014. For selected reviews, see: c) P. Braunstein, D. Matt, D. Nobel, Chem.
Rev. 1988, 88, 747; d) T. Sakakura, J. C. Choi, H. Yasuda, Chem. Rev.
2007, 107, 2365; e) A. Correa, R. Martín, Angew. Chem. Int. Ed. 2009, 48,
6201; Angew. Chem. 2009, 121, 6317 f) M. Cokoja, C. Bruckmeier, B.
Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50,
8510; Angew. Chem. 2011, 123, 8662 g) K. Huang, C. L. Sun, Z. J. Shi,
Chem. Soc. Rev. 2011, 40, 2435; h) J. L. Wang, C. X. Miao, X.Y. Dou, J.
Gao, L. N. He, Curr. Org. Chem. 2011, 15, 621; i) Y. Tsuji, T. Fujihara,
Chem. Commun. 2012, 48, 9956; j) M. He, Y. Sun, B. Han, Angew. Chem.
Int. Ed. 2013, 52, 9620; Angew. Chem. 2013, 125: 9798; k) L. Zhang, Z.
Hou, Chem. Sci. 2013, 4, 3395; l) M. Aresta, A. Dibenedetto, A. Angelini,
Chem. Rev. 2014, 114, 1709; m) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat.
[10] K. B. Sloan, N. Bodor, Int. J. Pharm. 1982, 12, 299.
[11] For selected reviews on synthesis and utility of allenes, see: a) S. Ma, Chem.
Rev. 2005, 105, 2829; b) S. Yu and S. Ma, Angew. Chem. Int. Ed. 2012,
This article is protected by copyright. All rights reserved.