4
Tetrahedron
Initially, Michael addition of 1,3-dicarbonyl compound to
enone affords the Michael adduct 8. Iodination of 8 furnishes 9,
which undergoes intramolecular substitution to generate
dihydrofuran 2. If a strong organic base (DBU) was used, the
further iodination reaction occurs followed by extrusion of HI to
give the furan product 3. It should be noted that the formation of
furan product was determined on whether the second iodination
could occur. If proper substituents which benefit the enolizaiton
and iodination located at the benzoyl ring, even under DMAP
conditions, furan products could also be obtained.
Öktemer, A. Tetrahedron 2007, 63, 7229; (c) Martinet, S.; Méou, A.;
Brun, P. Eur. J. Org. Chem. 2009, 2306; (d) Garzino, F.; Méou, A.;
Brun, P. Helv. Chim. Acta 2011, 94, 18; (e) Biçer, E.; Yilmaz, M.;
Karataş, M.; Pekel, A. T. Helv. Chim. Acta 2012, 95, 795; (f) Aslan, H.;
Akpınar, D. E.; ÖKtemer, A.; Yakut, M.; Alagöz, O. Helv. Chim. Acta
2014, 97, 652-663; (g) Li, P.; Zhao, J.; Xia, C.; Li, F. Org. Lett. 2014, 16,
5992.
8. (a) Zhang, Y.; Raines, A. J.; Flowers, R. A. Org. Lett. 2003, 5, 2363; (b)
Tseng, C. C.; Wu, Y.-L.; Chuang, C.-P. Tetrahedron 2002, 58, 7625; (c)
Liao, Y. J.; Wu, Y. L.; Chuang, C. P. Tetrahedron 2003, 59, 3511; (d)
Chuang, C.-P.; Wu, Y.-L. Tetrahedron 2004, 60, 1841; (e) Merey, G.;
Kaya, M.; Anaç, O. Helv. Chim. Acta 2012, 95, 1409; (f) Maiti, S.;
Perumal, P. T.; Menéndez, J. C. Tetrahedron 2010, 66, 9512; (g) Casey,
B. M.; Eakin, C. A.; Jiao, J.; Sadasivam, D. V.; Flowers, R. A.
Tetrahedron 2009, 65, 10762.
9. (a) Ko, T. Y.; Youn, S. W. Adv. Synth. Catal. 2016, 358, 1934; (b) Yi,
H.; Liao, Z.; Zhang, G.; Zhang, G.; Fan, C.; Zhang, X.; Bunel, E. E.; Pao,
C.-W.; Lee, J.-F.; Lei, A. Chem. Eur. J. 2015, 21, 18925.
10. (a) Anaç, O.; Sezer, Ö.; Candan, Ö.; Güngör, F. S.; Cansever, M. S.
Tetrahedron Lett. 2008, 49, 1062; (b) Güngör, F. S.; Anaç, O.; Sezer, Ö.
Tetrahedron Lett. 2007, 48, 4883; (c) Pirrung, M. C.; Blume, F. J. Org.
Chem. 1999, 64, 3642; (d) Lee, Y. R.; Suk, J. Y. Tetrahedron 2002, 58,
2359; (e) Lee, Y. R.; Suk, J. Y.; Kim, B. S. Tetrahedron Lett. 1999, 40,
6603; (f) Lee, Y. R.; Hwang, J. C. Eur. J. Org. Chem. 2005, 1568; (g)
Zhou, J.-L.; Liang, Y.; Deng, C.; Zhou, H.; Wang, Z.; Sun, X.-L.; Zheng,
J.-C.; Yu, Z.-X.; Tang, Y. Angew. Chem. Int. Ed. 2011, 50, 7874; (h)
Xia, L.; Lee, Y. R. Eur. J. Org. Chem. 2014, 3430; (i) Tan, W.; Yoshikai,
N. J. Org. Chem. 2016, 81, 5566.
11. (a) Jiang, Y.; Ma, D. Tetrahedron: Asymmetry 2002, 13, 1033; (b)
Redon, S.; Leleu, S.; Pannecoucke, X.; Franck, X.; Outurquin, F.
Tetrahedron 2008, 64, 9293; (c) Cao, W.; Zhang, H.; Chen, J.; Zhou, X.;
Shao, M.; McMills, M. C. Tetrahedron 2008, 64, 163; (d) Qian, J.; Cao,
W.; Zhang, H.; Chen, J.; Zhu, S. J. Fluorine Chem. 2007, 128, 207; (e)
Yang, Z.; Fan, M.; Mu, R.; Liu, W.; Liang, Y. Tetrahedron 2005, 61,
9140; (f) Zheng, J.-C.; Zhu, C.-Y.; Sun, X.-L.; Tang, Y.; Dai, L.-X. J.
Org. Chem. 2008, 73, 6909; (g) Han, Y.; Hou, H.; Yao, R.; Fu, Q.; Yan,
C.-G. Synthesis 2011, 4061; (h) Kumar, A.; Srivastava, S.; Gupta, G.
Green Chem. 2012, 14, 3269; (i) Rajesh, S. M.; Perumal, S.; Menéndez,
J. C.; Pandian, s.; Murugesan, R. Tetrahedron 2012, 68, 5631.
Scheme 3 Proposed mechanism
Conclusion
In summary, we have developed a one-pot two-step formal
[3+2]-cycloaddition of 1,3-dicarbonyl compounds with enones
for the efficient synthesis of dihydrofurans and furans via a
Michael addition and the subsequent I2-mediated cyclization. In
the second step of cyclization, chemoselective formation of
dihydrofurans and furans could be controlled by using DMAP
and DBU as the base, respectively. A new route for the
conversion of dihydrofurans to furans was developed. The
present method shows the following advantages such as easy
operability, metal-free and mild conditions.
12. (a) Ye, Y.; Wang, L.; Fan, R. J. Org. Chem. 2010, 75, 1760; (b) Sun, Y.;
Gan, J.; Fan, R. Adv. Synth. Catal. 2011, 353, 1735; (c) Bosnidou, A.-E.;
Kalpogiannaki, D.; Karanestora, S.; Nixas, J. A.; Hadjiarapoglou, L. P. J.
Org. Chem. 2015, 80, 1279; (d) Kalpogiannaki, D.; Martini, C.-I.;
Nikopoulou, A.; Nyxas, J. A.; Pantazi, V.; Hadjiarapoglou, L. P.
Tetrahedron 2013, 69, 1566.
13. For reviews, see: (a) French, A. N.; Bissmire, S.; Wirth, T. Chem. Soc.
Rev. 2004, 33, 354; (b) Togo, H.; Iida, S. Synlett 2006, 14, 2159; (c)
Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T. Chem. Commun. 2009,
5075; (d) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Chem. Eur.
J. 2012, 18, 5460; (e) Liu, D.; Lei, A. Chem. Asian J. 2015, 10, 806.
14. (a) Miao, C.-B.; Zhang, M.; Tian, Z.-Y.; Xi, H.-T.; Sun, X.-Q.; Yang, H.-
T. J. Org. Chem. 2011, 76, 9809; (b) Miao, C.-B.; Dong, C.-P.; Zhang,
M.; Ren, W.-L.; Meng, Q.; Sun, X.-Q. J. Org. Chem. 2013, 78, 4329.
15. (a) Garzion, F.; Méou, A.; Brun, P. Helv. Chim. Acta 2011, 94, 18; (b)
Pohmakotr, M.; Issaree, A.; Sampaongoen, L.; Tuchinda, P.; Reutrakul,
V. Tetrahedron Lett. 2003, 44, 7937; (c) Harris, E. B. J.; Banwell, M. G.;
Willis, A. C. Tetrahedron Lett. 2011, 52, 6887.
Acknowledgments
We are grateful for the financial support from the National
Natural Science Foundation of China (Nos. 21202011), Natural
Science Foundation of Jiangsu Province (BK20141171), the
Jiangsu Key Laboratory of Advanced Catalytic Materials and
Technology (BM2012110).
Supplementary Material
General synthetic procedures, characteristic data, and NMR
spectra of the products can be found, in the online version, at
References and notes
16. (a) Tsai, C.-J.; Chen, C.-C.; Tsai, C.-W.; Wu, M.-J. J. Org. Chem. 2016,
81, 3882; (b) Maiti, S.; Perumal, P.; Mene´ndez, J. C. Tetrahedron 2010,
66, 9512–9518.
1. (a) Wang, X.; Bastow, K. F.; Sun, C.-M.; Lin, Y.-L.; Yu, H.-J.; Don, M.-
J.; Wu, T.-S.; Nakamura, S.; Lee, K.-H. J. Med. Chem. 2004, 47, 5816;
(b) Wang, X.; Nakagawa-Goto, K.; Bastow, K. F.; Don, M.-J.; Lin, Y.-
L.; Wu, T.-S.; Lee, K.-H. J. Med. Chem. 2006, 49, 5631.
2. (a) Juo, R. R.; Herz, W. J. Org. Chem. 1985, 50, 700; (b) Jacobi, P. A.;
Walker, D. G.; Odeh, I. M. A. J. Org. Chem. 1981, 46, 2065; (c) Aso,
M.; Ojida, A.; Yang, G.; Cha, O. J.; Osawa, E.; Kanematsu, K. J. Org.
Chem. 1993, 58, 3960.
17. For recent selected papers, see: (a) Feng, J.-J.; Lin, T.-Y.; Zhu, C.-Z.;
Wang, H.; Wu, H.-H.; Zhang, J. J. Am. Chem. Soc. 2016, 138, 2178; (b)
Du, W.; Gu, Q.; Li, Z.; Yang, D. J. Am. Chem. Soc. 2015, 137, 1130; (c)
Yamada, S.; Murakami, K.; Itami, K. Org. Lett. 2016, 18, 2415; (d) Gu,
Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2016, 18, 2379.
18. (a) Yue, Y.; Zhang, Y.; Song, W.; Zhang, X.; Liu, J.; Zhuo, K. Adv.
Synth. Catal. 2014, 356, 2459; (b) Hu, H.-Y.; Zhu, Y.; Wang, L.; Xu, J.-
H. Synthesis 2005, 37, 1605.
3. (a) Kraus, G. A.; Zhang, N. J. Org. Chem. 2000, 65, 5644; (b) Yao, T.;
Yue, D.; Larock, R. C. J. Org. Chem. 2005, 70, 9985.
4. Lallemand, J.-Y.; Six, Y.; Ricard, L. Eur. J. Org. Chem. 2002, 503.
5. Veitch, G. E.; Boyer, A.; Ley, S. V. Angew. Chem. Int. Ed. 2008, 47,
9402.
19 (a) Stavber, G.; Iskra, J.; Zupan, M.; Stavber, S. Green Chem. 2009, 11,
1262. (b) Le Bras, G.; Provot, O.; Bekaert, A.; Peyrat, J.-F.; Alami, M.;
Brion, J.-D. Synthesis 2006, 1537. (c) Yin, G.; Gao, M.; She, N.; Hu, S.;
Wu, A.; Pan, Y. Synthesis 2007, 3113. (d) Rao, M. L. N.; Jadhav, D. N.
Tetrahedron Lett. 2006, 47, 6883.
6. Marks, K. M.; Park, E. S.; Arefolov, A.; Russo, K.; Ishihara, K.; Ring, J.
E.; Clardy, J.; Clarke, A. S.; Pelish, H. E. J. Nat. Prod. 2011, 74, 567.
7. (a) Wang, G.-W.; Dong, Y.-W.; Wu, P.; Yuan, T.-T.; Shen, Y.-B. J. Org.
Chem. 2008, 73, 7088; (b) Burgaz, E. V.; Yilmaz, M.; Pekel, A. T.;