Table 1 Production of rapalexins A (9) and B (18) in leaves of canola
(Brassica rapa) infected with Albugo candida
Notes and references
{ NMR spectroscopic data for rapalexin A (9): 1H-NMR (500.1 MHz,
CDCl3): d 7.98 (brs, N–H), 7.18 (t, J = 8.0 Hz, 1H), 7.09 (d, J = 2.2 Hz,
1H), 6.96 (d, J = 8.0 Hz, 1H), 6.59 (d, J = 7.9 Hz, 1H), 4.00 (s, 3H). 13C-
NMR (125.8 MHz, CDCl3): d 154.3 (s), 136.9 (–NLCLS), 136.1 (s), 125.3
(d), 118.5 (d), 114.4 (s), 108.1 (s), 105.1 (d), 101.2 (d), 55.7 (q). For
additional data see ESI. NMR spectroscopic data for rapalexin B (18): 1H-
NMR (500.1 MHz, CD3CN): d 9.31 (brs, 1H), 7.34 (d, J = 2.9 Hz, 1H),
7.09 (d, J = 8.7 Hz, 1H), 6.86 (d, J = 8.7 Hz, 1H), 6.53 (s, 1H), 3.94 (s, 3H).
1H-NMR (500.1 MHz, CD3OD): d 7.29 (s, 1H), 7.01 (d, J = 8.7 Hz, 1H),
6.82 (d, J = 8.7 Hz, 1H), 3.97 (s, 3H). 13C-NMR (CD3OD): d 143.2 (s),
138.7 (s), 133.7 (–NLCLS), 131.1 (s), 121.7 (d), 117.8 (s), 114.8 (d), 108.3 (d),
104.5 (s), 61.2 (q). For additional data see ESI.
Rapalexin A
(9) (nmol g21
fresh leaves)
Rapalexin B
(18) (nmol g21
fresh leaves)
Days after
inoculation
5
6
7
8
9
not detected
not detected
not detected
0.4–0.6
0.7–1.1
0.7–0.9
2.3–3.3
4.1–8.1
4.3–8.3
5.3–14.7
3.9–9.7
7.5–9.1
10
a
Amounts of rapalexins A and B in leaves were determined by
HPLC using calibration curves; the correlation coefficients of
phytoalexin calibration curves were ¢ 0.9998.
§ The production of rapalexins A and B is localised and restricted to areas
of infected tissues where the concentration can be around 0.1 mM (like any
other phytoalexins).
Scheme 4 Proposed biosynthetic precursors 19 and 20 of rapalexins A
(9) and B (18), respectively.
1 For a recent review on glucosinolate decomposition see, A. M. Bones
and J. T. Rossiter, Phytochemistry, 2006, 67, 1053–1067.
2 For a review on glucosinolate and isothiocyanate distribution in plants
see, J. W. Fahey, A. T. Zalcmann and P. Talalay, Phytochemistry, 2001,
56, 5–51.
3 H. D. VanEtten, J. W. Mansfield, J. A. Bailey and E. E. Farmer, Plant
Cell, 1994, 6, 1191–1192.
4 M. S. C. Pedras, M. Jha and P. W. K. Ahiahonu, Curr. Org. Chem.,
2003, 7, 1635–1647.
5 M. Takasugi, N. Katsui and A. Shirata, J. Chem. Soc., Chem.
Commun., 1986, 1077–1078.
6 M. S. C. Pedras and P. W. K. Ahiahonu, Phytochemistry, 2005, 66,
391–411.
7 M. S. C. Pedras, M. G. Sarwar, M. Suchy and A. M. Adio,
Phytochemistry, 2006, 67, 1503–1509.
occurring isothiocyanates.2 Nevertheless, considering that all
crucifer isothiocyanates reported so far derive from the corre-
sponding glucosinolates,2 rapalexins A and B may derive from yet
to be discovered indolyl glucosinolates or from closely related
indolyl thiohydroximates such as 19 and 20, via a Lossen type
rearrangement,21 as depicted in Scheme 4. Clearly, this hypothesis
requires further work with isotopically labelled precursors. That is,
the discovery of these unique isothiocyanates 9 and 18 reveals
additional pathways that need to be integrated in the biosynthetic
puzzle of crucifer phytoalexins.22
8 A. Lynn, A. Collins, Z. Fuller, K. Hillman and B. Ratcliffe, Proc. Nutr.
Soc., 2006, 65, 135–144.
Finally, it is noteworthy that both isothiocyanates 9 and 18 are
stable compounds under the various conditions used for their
isolation, purification and analysis, in contrast to indolyl-3-methyl
isothiocyanates such as 21 and 22.23 It would be of interest to
determine the potential anti-carcinogenic activity of rapalexins in
mammalian systems. Further work to improve the syntheses and
establish the biosynthetic precursors of rapalexins A and B is in
progress.
9 A. Wiseman, Trends Food Sci. Technol., 2005, 16, 215–216.
10 J. Barillari, D. Canistro, M. Paolini, F. Ferroni, G. F. Pedulli, T. Iori
and L. Valgimigli, J. Agric. Food Chem., 2005, 53, 2475–2482.
11 R. J. O’Connell and R. Panstruga, New Phytol., 2006, 171, 699–718.
12 M. S. C. Pedras, A. M. Adio, M. Suchy, D. P. Okinyo, Q. A. Zheng,
M. Jha and M. G. Sarwar, J. Chromatogr., A, 2006, 1133, 172–183.
13 S. Sharma, Synthesis, 1978, 803–820.
14 G. Berti, A. Settimo and E. Nannipieri, J. Chem. Soc. C, 1968,
2145–2151.
15 M. Makosza, W. Danikiewicz and K. Wojciechowski, Liebigs Ann.
Chem., 1988, 203–208.
16 E. T. Pelkey and G. W. Gribble, Synthesis, 1999, 7, 1117–1122.
17 J. S. Yadav, B. V. S. Reddy, S. Shubashree and K. Sadashiv,
Tetrahedron Lett., 2004, 45, 2951–2954.
18 A. Delgado and J. Clardy, J. Org. Chem., 1993, 58, 2862–2866.
19 B. P. Murphy, J. Org. Chem., 1985, 50, 5873–5875.
20 E. von Ropenack, A. Parr and P. Schulze-Lefert, J. Biol. Chem., 1998,
273, 9013–9022.
21 R. Iori, P. Rollin, H. Streicher, J. Thiem and S. Palmieri, FEBS Lett.,
1996, 385, 87–90.
22 M. S. C. Pedras and D. P. Okinyo, Chem. Commun., 2006, 17,
1848–1850.
23 (a) Both compounds 21 and 22 remain to be isolated or prepared. See,
P. Kutschy, M. Dzurilla, M. Takasugi, M. Torok, I. Achbergerova,
R. Homzova and M. Racova, Tetrahedron, 1998, 54, 3549–3566; (b)
A. B. Hanley and K. R. Parsley, Phytochemistry, 1990, 29, 769–771.
Financial support from the Natural Sciences and Engineering
Research Council of Canada (Accelerator Grants for Exceptional
New Opportunities to M.S.C.P.) is gratefully acknowledged. We
thank S. R. Rimmer from Agriculture and Agri Food Canada,
Saskatoon Research Centre for providing Albugo candida. We
acknowledge the technical assistance of K. Thoms and K. Brown,
Department of Chemistry, in MS and NMR determinations,
respectively.
370 | Chem. Commun., 2007, 368–370
This journal is ß The Royal Society of Chemistry 2007