a-amino acids, holding them to a near perpendicular angle
(calculated aryl plane angle of 100.83u). Furthermore, and of
importance for application as a scaffold, the DFT calculation
suggests that the N- and C-terminated a-amino acid ‘arms’ are
projected along the aryl planes of the Tro¨ger base.
In summary, we have developed a novel strategy for the
synthesis of structurally unique bis-(N,C-protected-a-amino acid)
derived Tro¨ger base adducts. Using chemoselective N- or
C-a-amino acid deprotection strategies we have demonstrated
the feasibility of synthesising non-symmetric Tro¨ger base tetra-
peptides. Our hypothesis that Tro¨ger base adducts can be
employed as new conformationally restricted scaffolds has been
reinforced by high level ab initio calculations.
Fig. 4 Calculated (using B3LYP/6-31G) conformation of 11 and tert-
butyl Tro¨ger base edge-to-face interactions reported by Wilcox et al.
SPB would like to thank Pfizer, The University of East Anglia
(VS), the Dovetrust (SVS), and the EPSRC for funding (LL) and
Professor Floris Rutjers (University of Nijmegen) for a gift of
(S)-propargylglycine.
Notes and references
1 M. Val´ık, R. M. Strongin and V. Kra´l, Supramol. Chem., 2005, 17, 347.
2 M. Demeunynck and A. Tatiboue¨t, Prog. Heterocycl. Chem., 1999, 11,
1; I. Sucholeiki, V. Lynch, L. Phan and C. S. Wilcox, J. Org. Chem.,
1988, 53, 98.
3 N. Sewald and H.-D. Jakubke, Peptides: Chemistry and Biology, Wiley-
VCH, Weinheim, 2002.
4 J. E. Chrencik, A. Brooun, M. I. Recht, M. L. Kraus, M. Koolpe,
A. R. Kolatkar, R. H. Bruce, G. Martiny-Baron, H. Widmer,
E. B. Pasquale and P. Kuhn, Structure, 2006, 14, 321.
Fig. 5 Calculated conformation using B3LYP/6-31G basis set.
5 K. D. Stigers, M. J. Soth and J. S. Nowick, Curr. Opin. Chem. Biol.,
1999, 3, 714; Y. J. Chung, B. R. Huck, L. A. Christianson, H. E. Stanger,
S. Krauthauser, D. R. Powell and S. H. Gellman, J. Am. Chem. Soc.,
2000, 122, 3995; S. Goswani, K. Ghosh and S. Dasgupta, J. Org. Chem.,
2000, 65, 1907; C. Pardo, E. Sesmilo and E. Gutierrez-Puebla, J. Org.
Chem., 2001, 66, 1607; S. Peluso, P. Dumy, L. Yokokana and
M. Mutter, J. Org. Chem., 1999, 64, 7114.
6 F. Hof, M. Schar, D. M. Scofield, F. Fischer, F. Diederich and
S. Sergeyev, Helv. Chim. Acta, 2005, 88, 2333; C. Solano, D. Svensson,
Z. Olomi, J. Jensen, O. F. Wendt and K. Warnmark, Eur. J. Org.
Chem., 2005, 16, 3510.
7 J. Jensen, M. Strozyk and K. Wa¨rnmark, Synthesis, 2002, 2761.
8 S. H. Wilen, J. Z. Qi and P. G. Williard, J. Org. Chem., 1991, 56, 485.
9 See the ESI for the synthesis and analytical data associated with the
compounds discussed within this manuscript.
10 U. Maitra and B. G. Bag, J. Org. Chem., 1992, 57, 6979.
11 T. Hundertmark, A. F. Littke, S. L. Buchwald and G. C. Fu, Org. Lett.,
2000, 2, 1729.
tripeptide 17 in a 60% yield. Chemoselective cleavage of the N-Boc
group off 17 (TFA, 83%) and subsequent appendage of (N)-Boc-
(S)-histidine afforded Tro¨ger base tetrapeptide 18, which under-
went hydrogenation affording 19.
With the potential application of the a-amino acid Tro¨ger base
conjugates as scaffolds in mind we sought corroboration of their
conformation. Despite an intensive effort we have been unable to
grow crystals of 11–13 or 19 suitable for X-ray analysis,
furthermore NOE experiments were unproductive.
Employing ab initio DFT calculations Stephens et al.12 predicted
the conformations of a series of Tro¨ger base adducts and
compared their results with X-ray crystal structures deposited in
the CSD. The agreement of theory and experiment was excellent.
Using Gaussian 9813 (B3LYP functional level and 6-31G basis set)
an energy minimisation performed on the relatively simple adduct
11 revealed an unusual ‘bite back’ of one of the N-Boc groups such
that the tert-butyl moiety undergoes edge-to-face aryl–alkyl
interactions (Fig. 4). Interestingly, and in agreement with our
calculations, Wilcox et al. observed similar molecular recognition
forces in ‘Tilted-T’ Tro¨ger base derivatives. Indeed Wilcox et al.
reported that alkyl tert-butyl ester 20 had a ‘strong preference,
greater than any aryl ester, for the formation of edge-to-face
interactions’.14
12 A. Aamouche, F. J. Devlin and P. J. Stephens, J. Am. Chem. Soc., 2000,
122, 2346.
13 Gaussian 98; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery,
Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A.
Pople, Gaussian, Inc.: Pittsburgh, PA, 1998.
To test our concept that a-amino acid Tro¨ger base conjugates
may be capable of acting as conformationally restrictive scaffolds
we subjected N-Cbz derived 19 to ab initio DFT calculations
(B3LYP and 6-31G). Gratifyingly, the calculations indicate (Fig. 5)
that the Tro¨ger base scaffold does indeed constrain appended
14 S. Paliwal, S. Geib and C. S. Wilcox, J. Am. Chem. Soc., 1994, 116,
4497; E.-l. Kim, S. Paliwal and C. S. Wilcox, J. Am. Chem. Soc., 1998,
120, 11192.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 389–391 | 391