Published on Web 01/17/2007
Discovery of Chemical Reactions through Multidimensional
Screening
Aaron B. Beeler,* Shun Su, Chris A. Singleton, and John A. Porco, Jr.*
Contribution from the Department of Chemistry and Center for Chemical Methodology and
Library DeVelopment (CMLD-BU), Boston UniVersity, 590 Commonwealth AVenue,
Boston, Massachusetts 02215
Received October 18, 2006; E-mail: porco@bu.edu
Abstract: Multidimensional reaction screening of ortho-alkynyl benzaldehydes with a variety of catalysts
and reaction partners was conducted in an effort to identify new chemical reactions. Reactions affording
unique products were selected for investigation of preliminary scope and limitations.
type reaction after screening 10,000 reaction mixtures.7 A more
recent example was reported by Liu and co-workers8 wherein
Introduction
Reaction development has historically been guided by
problems in total synthesis or interest in developing chemical
transformations of broad scope and utility.1,2 Chemical meth-
odology development has increasingly relied on systematic
evaluation of catalysts3 and other variables including solvent,
temperature, and supporting ligands.4,5 Screening approaches
have increased the efficiency of reaction development6 with
regard to discovery of active catalysts or conditions but have
generally been focused on specific transformations of interest.
a novel carbon-carbon bond-forming reaction of alkynes and
alkenes was discovered using DNA-templated synthesis.
As a part of our overall interest in the synthesis of new
chemotypes and structural frameworks, we have initiated a
program to identify novel chemical transformations using
“multidimensional screening”. In this approach, substrates may
be reacted with various catalysts and reaction partners in an
array format and analyzed for unique reaction processes. Herein,
we report our initial studies on this mode of reaction screening
and the identification and exploration of several new transfor-
mations discovered during initial screening efforts.
An emerging but underdeveloped method for chemical
reaction discovery involves high-throughput screening. A few
examples have been reported in which new reactions were
discovered through screening of either multicomponent systems
or reaction partners and catalysts. For example, Weber and co-
workers reported the discovery of a novel multicomponent, Ugi-
Results and Discussion
Significant research has been reported utilizing cycloisomer-
ization of o-alkynyl benzaldehydes and related substrates.
Yamamoto and others have reported numerous approaches to
afford putative metal-“ate” dipolar intermediates (1a) that may
be reacted further to afford a variety of structures including
naphthyl ketones 2 (Scheme 1a). Iwasawa and co-workers have
reported group VI transition metal-mediated cycloisomerizations
to afford Fischer carbene intermediates (1b) which subsequently
undergo further reactions to afford polycyclic structures such
as 3 (Scheme 1b).9 Several examples10 have been reported in
(1) For recent reviews on reaction method development related to natural
product synthesis, see: (a) Nicolaou, K. C.; Snyder, S. S. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 11929.
(2) For recent reviews on focused reaction method development, see: Taylor,
M. S.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5368.
(3) (a) Taylor, S. J.; Morken, J. P. Science 1998, 280, 267. (b) Lavastre, O.;
Morken, J. P. Angew. Chem., Int. Ed. 1999, 38, 3163. (c) Stambuli, J. P.;
Stauffer, S. R.; Shaughnessy, K. H.; Hartwig, J. F. J. Am. Chem. Soc. 2001,
124, 2677. (d) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40, 284. (e)
Evans, M. A.; Morken, J. P. J. Am. Chem. Soc. 2002, 124, 9020. (f) Evans,
M. A.; Morken, J. P. J. Am. Chem. Soc. 2002, 124, 9020. (g) Evans, C. A.;
Miller, S. J. Curr. Opin. Chem. Biol. 2002, 6, 333. (h) Srinivasan, N.;
Ganesan, A. Chem. Commun. 2003, 916. (i) Ireland, T.; Fontanet, F.; Tchao,
G.-G. Tetrahedron Lett. 2004, 45, 4383. (j) McWilliams, C. J.; Sidler, R.
D.; Sun, Y.; Mathre, D. J. J. Assoc. Lab. Auto. 2005, 10, 394.
(4) Gooding, O. W.; Lindberg, T.; Miller, W.; Munyak, E.; Vo, L. Org. Process
Res. DeV. 2001, 5, 283.
(5) (a) Hawkins, J. M.; Makowski, T. W. Org. Process Res. DeV. 2001, 5,
328. (b) Kobayashi, S.; Kakimoto, K.; Sugiura, M. Org. Lett. 2002, 8, 1319.
(c) Blume, F.; Zemolka, S.; Fey, T.; Kranich, R.; Schamlz, H.-G. AdV.
Synth. Catal. 2002, 344, 868. (d) Ding, K.; Du, H.; Yuan, Y.; Long, J.
Chem.-Eur. J. 2004, 10, 2872.
(6) For examples of automated screening of reaction conditions, see: (a) Harre,
M.; Neh, H.; Schulz, C.; Tilstam, U.; Wessa, T.; Weinmann, H. Org.
Process Res. DeV. 2001, 5, 335. (b) von Wangelin, A. J.; Neumann, H.;
Gordes, D.; Klaus, S.; Jiao, H.; Spannenberg, A.; Kruger, T.; Wendler, C.;
Thurow, K.; Stoll, N.; Beller, M. Chem.-Eur. J. 2003, 9, 2273. (c) Di, L.;
McConnell, O. J.; Kerns, E. H.; Sutherland, A. G. J. Chromatogr., B 2004,
809, 231. (d) Dinter, C.; Weinmann, H.; Merten, C.; Schutz, A.; Blume,
T.; Sander, M.; Harre, M.; Neh, H. Org. Process Res. DeV. 2004, 8, 482.
(e) Rudolph, J.; Lormann, M.; Bolm, C.; Dahmen, S. AdV. Synth. Catal.
2005, 347, 1361.
(7) Weber, L.; Illgen, K.; Almstetter, M. Synlett 1999, 366.
(8) (a) Kana, W. M.; Rosenman, M. M.; Sakurai, K.; Snyder, T. M.; Liu, D.
R. Nature 2004, 431, 545. (b) Miller, S. J. Nat. Biotechnol. 2004, 22, 1378.
(9) (a) Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2001, 123,
5814. (b) Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002,
124, 11592. (c) Kusama, H.; Funami, H.; Shido, M.; Hara, Y.; Takaya, J.;
Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 2709.
(10) (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am.
Chem. Soc. 2002, 124, 12650. (b) Asao, N.; Nogami, T.; Takahashi, K.;
Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764. (c) Asao, N.; Kasahara,
T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2003, 115, 3628. (d) Asao, N.;
Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.
(e) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6,
605. (f) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004,
126, 7459. (g) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc.
2004, 126, 7458. (h) Nakamura, I.; Mizushima, Y.; Gridnev, I. D.;
Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9844. (i) Kim, N.; Kim, Y.;
Park, W.; Sung, D.; Gupta, A.-K.; Oh, C.-H. Org. Lett. 2005, 7, 5289. (j)
Sato, K.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2005, 70, 8977. (k) Asao,
N.; Sato, K.; Menggenbateer; Yamamoto, Y. J. Org. Chem. 2005, 70, 3682.
9
10.1021/ja0674744 CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 1413-1419
1413