10.1002/anie.201800144
Angewandte Chemie International Edition
COMMUNICATION
area of photocatalysis. Their facile synthesis and modularity is
ideally suited to combinatorial synthesis and screening in
different photocatalytic processes. Preparation of a 50-complex
library was accomplished and evaluated in three mechanistically
distinct photocatalytic reactions. In each case, a copper-based
catalyst could be identified to provide ≥80 % isolated yield of the
desired product. The screening process identified new catalyst
structures based upon BINAP bisphosphines (for photoredox
and energy transfer processes) and triazole-based diamines (for
PCET processes). BINAP-based complexes were generally
efficient across all reaction types, and possessed higher redox
potentials and triplet energies (for photoredox and PCET:
Cu(dq)(BINAP)BF4, abs 472 nm, em 521 nm, Eo = -1.87 eV, ET
= 2.38 eV, =4 ns), although judicious choice of diamine was
necessary to extend excited state lifetimes for energy transfer
processes (for energy transfer Cu(dmp)(BINAP)BF4, abs 387
nm, em 445 nm, Eo = -2.04 eV, ET = 2.38 eV, =2188 ns). The
studies also demonstrate the first utility of copper-based
photocatalysts in synthetic PCET and energy transfer processes.
Efforts to rationalize catalyst efficiency through available
photophysical parameters could explain trends seen in a certain
transformation, but would not have been able to predict catalyst
behavior in another. Importantly, the above study represents a
rare evaluation of photocatalyst structure vs. activity in
photocatalytic processes, that is surprisingly absent from the
literature for other more well-established photocatalyst types.
The facile synthesis of heteroleptic Cu(NN)(PP)X, complexes
and the ability to vary both physical and photophysical
characteristics, should encourage further exploration and new
applications of the catalyst-class in photocatalysis.
Higgins, S. N. Fatur, S. G. Shepard, S. M. Stevenson, D. B. Boston, E.
M. Ferreira, J. Am. Chem. Soc. 2016, 138, 5451-5464.
[5]
a) N. Armaroli, G. Accorsi, F. Cardinali, A. Listorti, Top. Curr. Chem.
2007, 280. 69–115; b) O. Horvath, Coord. Chem. Rev. 1994, 303-324;
c) D. R. McMillin, J. R. Kirchhoff, K. V. Goodwin, Coord. Chem. Rev.
1985, 83-92.
[6]
[7]
[8]
a) D. P. Schwendiman, C. Kutal, J. Am. Chem. Soc. 1977, 99, 5677–
5682; b) J.-M. Kern, J.-P. Sauvage, J. Chem. Soc. Chem. Commun.
1987, 546–548.
a) H.-Q. Do, S. Bachman, A. C. Bissember, J. C. Peters, G. C. Fu, J.
Am. Chem. Soc. 2014, 136, 2162 – 2167; b) C. Uyeda, Y. Tan, G. C.
Fu, J. C. Peters, J. Am. Chem. Soc. 2013, 135, 9548 – 9552.
M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, Chem. Eur. J.
2012, 18, 7336–7340; b) P. T. G. Rabet, G. Fumagalli, S. Boyd, M. F.
Greaney, Org. Lett. 2016, 18, 1646-1649; c) A. Baralle, L. Fensterbank,
J.-P. Goddard, C. Ollivier, Chem. Eur. J. 2013, 19, 10809-10813; d) D.
B. Bagal, G. Kachkovskyi, M. Knorn, T. Rawner, B. M. Bhanage, O.
Reiser, Angew. Chem., Int. Ed. 2015, 54, 6999-7002; Angew. Chem.
2015, 127, 7105-7108.
[9]
a) A. C. Hernandez-Perez, S. K. Collins, Acc. Chem. Res. 2016, 49,
1557-1565. b) A. C. Hernandez-Perez, S. K. Collins, Angew. Chem., Int.
Ed. 2013, 52, 12696-12700; Angew. Chem. 2013, 125, 12928-12932.
[10] M. Knorn, T. Rawner, R. Czerwieniec, O. Reiser, ACS Catal. 2015, 5,
5186–5193.
[11] J. J. Devery III, J. J. Douglas, J. D. Nguyen, K. P. Cole, R. A. Flowers II,
C. R. J. Stephenson, Chem. Sci. 2015, 6, 537–541.
[12] D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noel, Chem.
Rev. 2016, 116, 10276-10341.
[13] D. G. Cuttell, S.-M. Kuang, P. E. Fanwick, D. R. McMillin, R. A. Walton,
J. Am. Chem. Soc. 2002, 124, 6–7.
[14] a) P. Dierkes, P. W. N. M. van Leeuwen, J. Chem. Soc., Dalton Trans.
1999, 1519–1529; b) T. Benincori, O. Piccolo, S. Rizzo, F. Sannicolo, J.
Org. Chem. 2000, 65, 8340-8347.
[15] J. Fernandez-Hernandez, S. Ladouceur, Y. Shen, A. Iordache, W.
Wang, L. Donato, S. Gallagher-Duva, M. De Anda Villa, J. D. Slinker, L.
De Cola, E. Zysman-Colman, J. Mater. Chem. C 2013, 1, 7440-7452.
[16] See Supporting Information for full data on absorption/emission spectra,
tabular data for reaction yields and excited state lifetimes.
[17] 1H NMR analysis of various catalysts over time did not show any ligand
exchange processes.
Acknowledgements
The authors acknowledge the Natural Sciences and Engineering
Research Council of Canada (NSERC), the NSERC CREATE in
Continuous Flow Science, Université de Montréal, the Centre for
Green Chemistry and Catalysis (CGCC) for generous funding.
Prof. D. Rochefort and Dr. B. Gélinas are thanked for access
and helpful discussions regarding cyclic voltammetry. Profs. M.
Lafleur and W. Skene are thanked for helpful discussions.
[18] a) K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am. Chem.
Soc. 1991, 113, 9401-9402; b) C R. Jamison, L. E. Overman, Acc.
Chem. Res. 2016, 49, 1578-1586.
[19] J. Yang, J. Zhang, L. Qi, C. Hu, Chen, Y. Chem. Commun., 2015, 51,
5275-5278.
[20] Although the homoleptic copper-based sensitizers were ineffective,
Cu(dap)2Cl can promote the reaction: G. Kachkovskyi, C. Faderland, O.
Reiser, Adv. Synth. Catal. 2013, 355, 2240-2248.
Keywords: photocatalysis • copper complexes • photoredox •
proton-coupled electron transfer • energy transfer
[21] Inefficient catalysts do not afford higher yields at longer reaction times.
See Supporting Information for details.
[22] K. T. Tarantino, P. Liu, R. R. Knowles, J. Am. Chem. Soc. 2013, 135,
10022−10025.
[1]
[2]
a) Handbook of Synthetic Photochemistry (Albini, A.; Fagnoni, M. Eds)
Wiley-VCH, Germany, 2010; b) D. Rackl, P. Kreitmeiera, O. Reiser,
Green Chem. 2016, 18, 214-219; c) C. G. S. Lima, T. de M. Lima, M.
Duarte, I. D. Jurberg, M. W. Paixao, ACS Catal. 2016, 6, 1389-1407.
SET: a) J. W. Beatty, C. R. J. Stephenson, Acc. Chem. Res. 2015, 48,
1474-1484; b) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem.
Rev. 2013, 113, 5322-5363. ET: D. M. Arias-Rotondo, J. K. McCusker,
Chem. Soc. Rev. 2016, 45, 5803–5820. PCET: E. C. Gentry, R. R.
Knowles, Acc. Chem. Res. 2016, 49, 1546-1556
[23] E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker, D. W. C.
MacMillan, Science 2017, 355, 380-385.
[24] E. P. Farney, T. P. Yoon, Angew. Chem., Int. Ed. 2014, 53, 793 –797;
Angew. Chem. 2014, 126, 812-816. Yoon has reported the methyl
dienyl azide as having
a calculated value of approximately 45.4
kcal/mol providing a good standard for comparison (1.96 eV).
[25] K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc. 1988, 110,
8736−8738.
[26] Catalysts with limited absorption profiles did not afford higher yields
when light exposure was increased. See Supporting Information. For a
related example see: C. Le, M. K. Wismer, Z.-C. Shi, R. Zhang, D. V.
Conway, G. Li, P. Vachal, I. W. Davies, D. W. C. MacMillan,ACS Cent.
Sci. 2017, 3, 647−653
[3]
[4]
F.Teply, Chemical Photocatalysis 2013, 111-138; b) D. A. Nagib, M. E.
Scott, D. W. C. MacMillan, J. Am. Chem. Soc. 2009, 131, 10875-10877.
O. Reiser, G. Kachkovskyi, V. Kais, P. Kohls, S. Paria, M. Pirtsch, D.
Rackl, H. Seo, Chemical Photocatalysis, 2013, 139-150; b) R. F.
This article is protected by copyright. All rights reserved.