3266
W. Chaładaj et al.
LETTER
(16) Analytical Data for Salen Ligand Precursor of 5g.
(6) For recent reviews, see: (a) Cycloaddition Reaction in
Organic Synthesis; Kobayashi, S.; Jørgensen, K. A., Eds.;
Wiley-VCH: Weinheim, 2002. (b) Jørgensen, K. A. Angew.
Chem. Int. Ed. 2000, 39, 2398.
(7) (a) Johannsen, M.; Jørgensen, K. A. J. Org. Chem. 1995, 60,
5757. (b) Johannsen, M.; Jørgensen, K. A. Tetrahedron
1996, 52, 7321. (c) Johannsen, M.; Jørgensen, K. A. J.
Chem. Soc., Perkin Trans. 2 1997, 52, 1183.
Mp 247–248 °C. 1H NMR (500 MHz, CDCl3): d = 1.23 (s,
18 H), 1.15–1.35 (m, 2 H), 1.40–1.50 (m, 2 H), 1.65–2.00
(m, 10 H), 2.04–2.09 (m, 6 H), 2.13–2.18 (m, 12 H), 3.26–
3,34 (m, 2 H), 6.96 (d, J = 2.2 Hz, 2 H), 7.24 (d, J = 2.2 Hz,
2 H), 8.29 (s, 2 H), 13.64 (s, 2 H). 13C NMR (125 MHz,
CDCl3): d = 24.4, 29.2, 31.4, 33.3, 34.1, 37.2, 37.2, 40.4,
25
72.4, 117.9, 126.0, 126.7, 136.6, 139.9, 158.2, 166.0. [a]D
(8) (a) Oi, S.; Terada, E.; Ohuchi, K.; Kato, T.; Tachibana, Y.;
Inoue, Y. J. Org. Chem. 1999, 64, 8660. (b) Bolm, C.;
Simić, O. J. Am. Chem. Soc. 2001, 123, 3830. (c) Mikami,
K.; Aikawa, K.; Yusa, Y.; Hatano, M. Org. Lett. 2002, 4, 91.
(d) Mikami, K.; Aikawa, K.; Yusa, Y. Org. Lett. 2002, 4, 95.
(e) Becker, J. J.; Van Orden, L. J.; White, P. S.; Gagne, M.
R. Org. Lett. 2002, 4, 727. (f) Bolm, C.; Verrucci, M.;
Simić, O.; Cozzi, P. G.; Raabe, G.; Okamura, H. Chem.
Commun. 2003, 2826. (g) Doherty, S.; Knight, J. G.;
Hardacre, C.; Lou, H.-K.; Newman, C. R.; Rath, R. K.;
Campbell, S.; Nieuwenhuyzen, M. Organometallics 2004,
23, 6127.
+325.7 (c 0.58, CHCl3). IR (KBr): 2950, 2905, 2850, 1625,
1598 cm–1. Anal. Calcd for C48H66N2O2: C, 82.00; H, 9.46;
N 3.98. Found: C, 82.06; H, 9.39, N, 3.82. Catalyst 5g:
HRMS: m/z calcd for C48H64N2O2Cr [M – BF4]+: 752.4367;
found: 752.4392.
(17) Catalyst 5g was synthesized from appropriate ligand
according to Jacobsen procedure: (a) Martínez, L. E.;
Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem.
Soc. 1995, 117, 5897. (b) Schaus, S. E.; Brånalt, J.;
Jacobsen, E. N. J. Org. Chem. 1998, 63, 403.
(18) Ligand precursor of 5g was obtained in three steps similar to
procedures known from literature: (a) Ref. 15. (b) Larrow,
J. F.; Jacobsen, E. N. J. Org. Chem. 1994, 59, 1939.
(19) Analytical Data for Cycloadducts 3.
(9) Achmatowicz, O.; Jurczak, J.; Pyrek, J. S. Tetrahedron
1976, 32, 2113.
(10) (a) Garoflo, A.; Hursthouse, M. B.; Malik, K. M. A.; Olivio,
H. F.; Roberts, S. M.; Sik, V. J. Chem. Soc., Perkin Trans. 1
1994, 1311. (b) Hibbs, D. E.; Hursthouse, M. B.; Knutsen,
L. J. S.; Malik, K. M. A.; Olivo, H. F. Acta. Chem. Scand.
1995, 49, 122. (c) Olivio, H. F.; Yu, J. J. Chem. Soc., Perkin
Trans. 1 1998, 391. (d) Molander, G. A.; Harris, C. R. J.
Org. Chem. 1997, 62, 2944.
(11) Kwiatkowski, P.; Asztemborska, M.; Caille, J.-C.; Jurczak,
J. Adv. Synth. Catal. 2003, 345, 506.
(12) Kwiatkowski, P.; Chaładaj, W.; Jurczak, J. Synlett 2005,
2301.
(13) (a) Pietikäinen, P. Tetrahedron 2000, 56, 417.
(b) Mascarenhas, C. M.; Miller, S. P.; White, P. S.; Morken,
J. P. Angew. Chem. Int. Ed. 2001, 40, 601. (c) Huang, Y.;
Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124,
5950. (d) Liang, S.; Bu, X. R. J. Org. Chem. 2002, 67, 2702.
(e) Gaquere, A.; Liang, S.; Hsu, F.-L.; Bu, X. R.
Tetrahedron: Asymmetry 2002, 13, 2089.
Compound 3a (ref. 11): GC (column b-dex 120, i.d. 30
m × 0.25 mm, carrier gas – nitrogen 100 kPa, oven temp.
150 °C): tR1[exo-3a] = 29.9, tR2[exo-3a] = 30.7, tR[(3S)-endo-3a]
33.1, tR[(3R)-endo-3a] = 34.1 min.
=
Compound 3b (ref. 7a,b and 8a): GC (column b-dex 120, i.d.
30 m × 0.25 mm, carrier gas – nitrogen 100 kPa, oven temp.
140 °C): tR1[exo-3b] = 18.8, tR2[exo-3b] = 19.5, tR[(3S)-endo-3b]
21.2, tR[(3R)-endo-3b] = 21.8 min.
=
Compound 3c: GC (column b-dex 120, i.d. 30 m × 0.25 mm,
carrier gas – nitrogen 100 kPa, oven temp. 140 °C):
t
t
R1[exo-3c] = 19.8, tR2[exo-3c] = 20.5, tR[(3S)-endo-3c] = 21.7,
R[(3R)-endo-3c] = 22.6 min. 1H NMR for endo-3c (500 MHz,
CDCl3): d = 1.21 (d, J = 1.8 Hz, 3 H), 1.22 (d, J = 1.8 Hz,
3 H), 1.26–1.42 (m, 2 H), 1.71–1.77 (m, 1 H), 2.03–2.10 (m,
1 H), 3.06–3.10 (m, 1 H), 4.26 (d, J = 1.8 Hz, 1 H), 4.56–
4.59 (m, 1 H), 5.01 (dq, J = 1.8, 1.8 Hz, 1 H), 6.23–6.28
(m, 1 H), 6.51–6.55 (m, 1 H). 13C NMR (125 MHz, CDCl3):
d = 20.9, 21.7, 25.7, 33.2, 66.4, 68.0, 74.2, 130.4, 134.7,
171.7.
(14) General Procedure for Cycloaddition of Cyclohexa-1,3-
diene to Alkyl Glyoxylates.
Compound 3d: GC (column b-dex 120, i.d. 30 m × 0.25 mm,
carrier gas – nitrogen 100 kPa, oven temp. 150 °C):
tR1[exo-3d] = 15.5, tR2[exo-3d] = 15.9, tR[(3S)-endo-3d] = 16.2,
To a solution of catalyst 5a–g (0.5–5 mol%) and alkyl
glyoxylate (1 mmol, freshly distilled from P2O5) in toluene
(1 mL) cyclohexa-1,3-diene (150 mL, 1.5 mmol) was added,
and the solution was stirred for 24 h at r.t. Afterwards the
reaction mixture was subjected to chromatography
(hexanes–EtOAc, 9:1).
t
R[(3R)-endo-3d] = 16.7 min. 1H NMR for endo-3d (500 MHz,
CDCl3): d = 1.18–1.28 (m, 1 H), 1.29 (s, 9 H), 1.81–1.87 (m,
1 H), 1.93–2.02 (m, 1 H), 2.16–2.24 (m, 1 H), 2.46–2.53 (m,
1 H), 4.51 (d, J = 7.3 Hz, 1 H), 4.59–4.63 (m, 1 H), 5.89–
5.94 (m, 1 H), 6.18–6.23 (m, 1 H). 13C NMR (125 MHz,
CDCl3): d = 18.1, 23.4, 27.9, 39.7, 70.7, 71.5, 75.5, 122.2,
136.0, 175.4.
(15) A bulky adamanthyl substituent in the 3-position turned out
to be essential in highly stereoselective HDA reaction
catalyzed by tridentate chromium(III) complexes:
(a) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew.
Chem. Int. Ed. 1999, 38, 2398. (b) Gademann, K.; Chavez,
D. E.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2002, 41, 3059.
(20) (a) Kwiatkowski, P.; Chaładaj, W.; Malinowska, M.;
Asztemborska, M.; Jurczak, J. Tetrahedron: Asymmetry
2005, 16, 2959. (b) Kwiatkowski, P.; Chaładaj, W.; Jurczak,
J. Tetrahedron 2006, 62, 5116.
Synlett 2006, No. 19, 3263–3266 © Thieme Stuttgart · New York