LETTER
Efficient Consecutive Alkylation–Knoevenagel Functionalisations
3327
(5) Relative base strength of supported bases used in this study;
the pKa values reported for the conjugated acids of their
corresponding non-supported analogues are: TBD: 25.44
(MeCN, 25 °C), BEMP: 27.63 (MeCN, 25 °C); see ref. 6a.
Supported reagents employed in this work were purchased
from Fluka (PS–BEMP), Argonaut (PS–TBD) and Silicycle
(Si–TBD).
(6) (a) Schwesinger, R.; Willaredt, J.; Schemper, H.; Keller, M.;
Schmitt, D.; Fritz, H. Chem. Ber. 1994, 127, 2435.
(b) Bensa, D.; Constantieux, T.; Rodriguez, J. Synthesis
2004, 923. (c) Graybill, T. L.; Thomas, S.; Wang, M. A.
Tetrahedron Lett. 2002, 43, 5305. (d) Adams, G.
Tetrahedron Lett. 2003, 44, 5041.
(7) (a) Alhambra, C.; Castro, J.; Chiara, J. L.; Fernández, E.;
Fernández Mayorales, A.; Fiandos, J. M.; García-Ochoa, S.;
Martín Ortega, M. D. Tetrahedron Lett. 2001, 42, 6675.
(b) Xu, W.; Mohan, R.; Morrissey, M. Bioorg. Med. Chem.
Lett. 1998, 8, 1089. (c) Ley, S. V.; Massi, A. J. Chem. Soc.,
Perkin Trans. 1 2000, 3645. (d) Caldarelli, M.; Habermann,
J.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1999, 107.
(e) Baxendale, I. R.; Ley, S. V. Bioorg. Med. Chem. Lett.
2000, 10, 1983. (f) McComas, W.; Chen, L.; Kim, K.
Tetrahedron Lett. 2000, 41, 3573. (g) Schwesinger, R.
Nachr. Chem., Tech. Lab. 1990, 38, 1214.
(8) (a) Subba Rao, Y. V.; De Vos, D. E.; Jacobs, P. A. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2261. (b) Fringuelli, F.;
Pizzo, F.; Vittoriani, C.; Vaccaro, L. Chem. Commun. 2004,
2756. (c) Xu, W.; Mohan, R.; Morrissey, M. Tetrahedron
Lett. 1997, 38, 7337. (d) Organ, M. G.; Dixon, C. E.
Biotechnol. Bioeng. Comb. Chem. 2000, 71, 71. (e) Iijima,
K.; Fukuda, W.; Tomoi, M. J. Macromol. Sc., Part A: Pure
Appl. Chem. 1992, 29, 249. (f) Tamura, Y.; Fukuda, W.;
Tomoi, M. Synth. Commun. 1994, 24, 2907. (g) Boisnard,
S.; Chastanet, J.; Zhu, J. Tetrahedron Lett. 1999, 7469.
(h) Chiara, J. L.; Encinas, L.; Díaz, B. Tetrahedron Lett.
2005, 46, 2445.
Aza-Michael–Knoevenagel Sequence (Method B)
Although the scope of Michael reaction using these re-
agents has been well reported,8a,b to the best of our knowl-
edge, no examples of aza-Michael reactions18 using 1, 2 or
3 have been described. Whereas alkylation of A1–A3 with
alkyl halides required two to three equivalents of support-
ed base, aza-Michael reaction of A1–A3 with acrylates C
proceeded employing catalytic amounts (20% mol) of
base 1–3. These supported bases afforded readily the aza-
Michael-adducts under mild conditions. Although PS–
BEMP (1) can be employed for this sequence, long reac-
tion times were required for the Knoevenagel step for the
scaffolds A1 and A2 and small quantities of byproducts
were present in the mixture.
The remarkable effectiveness and compatibility of the
supported bases 2 and 3 was confirmed for both sequenc-
es. All the studied bases successfully catalyse the first
transformation of the sequence (alkylation or aza-Micha-
el), independent of their basicity profile. PS–TBD (2) was
a more versatile reagent taking into account the scaffold
variability. It is important to note that, in the present
study, we did not observe the claimed significant differ-
ences between Si–TDB (3) and PS–TBD (2), probably
due to the fact that the latter can swell sufficiently in the
solvents used. Consequently, for the library production
(Figure 4), the more effective and less expensive PS–TBD
(2) was routinely employed.
In conclusion, a simple solution-phase approach has been
developed, easily adaptable to the parallel synthesis of in-
doles, quinolones and pyridazinones.20 These sequences
are not only novel but also constitute the first examples of
a consecutive alkylation–Knoevenagel and aza-Michael–
Knoevenagel one-pot functionalisations allowing to ex-
pand rapidly the molecular diversity of quinolone, indole
and pyridazinone libraries by using PS–TBD (2) as a rec-
ommended supported organic base.
(9) Ye, W.; Xu, J.; Tan, C.-T.; Tan, C.-H. Tetrahedron Lett.
2005, 46, 6875.
(10) (a) Smith, J. T.; Zeiler, H. J. History and Introduction In
Handbook of Experimental Pharmacology, Vol. 127;
Springer: Berlin, 1998, 1–11. (b) Pharmaceutical
Substances: Synthesis, Patents, Applications; Kleemann, A.;
Engel, J., Eds.; Thieme: Stuttgart, 2001. (c) Riesbeck, K. J.
Chemother. 2002, 14, 3. (d) Milata, V.; Claramunt, R.;
Elguero, J.; Zalupski, P. Targets Heterocycl. Syst. 2000, 4,
167. (e) Brown, E. M.; Reeves, D. S. Antibiot. Chemother.
1997, 419. (f) Hirai, K. Nippon Kagaku Ruoho Gakkai
Zusshi 2005, 53, 349. (g) Horton, D. A.; Bourne, G. T.;
Smythe, M. L. Chem. Rev. 2003, 103, 893.
(11) Sotelo, E.; Fraiz, N.; Yáñez, M.; Laguna, R.; Cano, E.; Brea,
J.; Raviña, E. Bioorg. Med. Chem. Lett. 2002, 12, 1575.
(12) Amaresh, R. R.; Perumal, P. T. Indian J. Chem., Sect. B:
Org. Chem. Incl. Med. Chem. 1997, 36, 541.
(13) For publications related to the catalysis of Knoevenagel
reaction by supported reagents, see: (a) Isobe, K.; Hoshi, T.;
Suzuki, T.; Hagiwara, H. Mol. Divers. 2005, 9, 317.
(b) Zeng, R.; Fu, X.; Gong, C.; Sui, Y.; Ma, X.; Yang, X. J.
Mol. Catal. A: Chem. 2005, 229, 1; and references cited
therein. (c) Strohmeier, G. A.; Kappe, C. O. Angew. Chem.
Int. Ed. 2004, 43, 621.
Acknowledgment
Thanks are due to University of Aveiro, FCT and FEDER for
funding the Organic Chemistry Research (Unity and Project POCI/
QUI/58835/2004) as well as Xunta de Galicia for its financial
support to Alberto Coelho. We also thank the Agencia Española de
Cooperación Internacional for a grant to Abdelaziz El Maatougui.
References and Notes
(1) Zaragoza, F.; Dörwald, X. Organic Synthesis on Solid
Phase, Vol. 2; Wiley-VCH: Weinheim, 2002.
(2) (a) Boger, D. L.; Desharnais, J.; Capps, K. Angew. Chem.
Int. Ed. 2003, 42, 4138. (b) An, H.; Dan Cook, P. Chem.
Rev. 2000, 100, 3311. (c) Nefzi, A.; Ostresch, J. M.;
Houghten, R. A. Chem. Rev. 1997, 97, 449.
(3) (a) Kirschning, A.; Monenschein, A.; Wittemberg, R.
Angew. Chem. Int. Ed. 2001, 40, 650. (b) Ley, S. V.;
Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.;
Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.;
Taylor, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3815.
(4) Collins, I. J. Chem. Soc., Perkin Trans. 1 2000, 2845.
(14) (a) Hadjeri, M.; Mariotte, A. M.; Boomendjel, A. Chem.
Pharm. Bull. 2001, 49, 1352. (b) Baket, D.; Sasaki, H.;
Kinoshita, T.; Tsutsumi, H.; Sakane, K. Bull. Chem. Soc.
Jpn. 1996, 69, 1371.
(15) Brown, D. J. In The Pyridazines I, Chemistry of Heterocyclic
Compounds; Taylor, E. C.; Wipf, P., Eds.; Wiley: New
York, 2000, 56.
Synlett 2006, No. 19, 3324–3328 © Thieme Stuttgart · New York