LETTER
Gold(III)-Catalyzed Double Wacker-type Reaction of 1,1-Diethynyl Acetate
65
at –10 °C for 12 h and quenched with H2O (80 mL) and
EtOAc (80 mL). The organic layers were separated, the
aqueous layer was extracted with EtOAc (50 mL), and
combined organic layers were dried with MgSO4 and
References and Notes
(1) (a) Handbook of Organopalladium Chemistry for Organic
Synthesis, Vol. II; Negishi, E., Ed.; Wiley: New York, 2002,
2309. For recent reviews, see: (b) Nakamura, I.;
concentrated in vacuo. To a solution of the crude product in
THF (30 mL) was added TBAF (22.4 mL of 1 M in THF,
22.4 mmol) and the mixture was stirred for 0.5 h at r.t. The
mixture was diluted with H2O (80 mL) and EtOAc (80 mL).
The organic layers were separated, the aqueous layer was
extracted with EtOAc (2 × 50 mL), and combined organic
layers were dried with MgSO4 and concentrated in vacuo. To
a solution of the crude product in pyridine (3 mL) and Ac2O
(2 mL) was added 4-dimethylaminopyridine (50 mg) and the
mixture was stirred for 3–10 h at r.t. The mixture was diluted
with H2O (50 mL) and EtOAc (50 mL). The organic layers
were separated, the aqueous layer was extracted with EtOAc
(50 mL), and combined organic layers were washed with aq
10% HCl, dried with MgSO4 and concentrated in vacuo. The
crude product was purified by column chromatography on
silica gel. The fraction eluted with hexane–EtOAc (100:1–
20:1) afforded 2. 2a: colorless needles; mp 51 °C. 1H NMR
(CDCl3): d = 2.09 (s, 3 H), 2.37–2.41 (m, 2 H), 2.70 (s, 2 H),
2.93–2.97 (m, 2 H), 7.19–7.32 (m, 5 H). 13C NMR (CDCl3):
d = 21.3, 30.4, 43.8, 66.3, 74.4, 80.0, 126.2, 128.5, 128.5,
140.6, 168.3. FAB–MS: m/z = 249 [M+ + Na]. IR (KBr):
3253, 2935, 2120, 1748 cm–1. Anal. Calcd for C15H14O2: C,
79.62; H, 6.24. Found: C, 79.41; H, 6.41. 2b: colorless oil.
1H NMR (CDCl3): d = 2.07 (s, 3 H), 2.66 (s, 2 H), 3.37 (s, 2
H), 7.25–7.39 (m, 5 H). 13C NMR (CDCl3): d = 21.4, 47.6,
66.7, 74.9, 79.8, 127.5, 127.9, 131.2, 133.7, 168.2. HRMS–
EI: m/z [M+] calcd for C14H12O2: 212.0837; found: 212.0833.
IR (KBr): 3270, 2122, 1744 cm–1. 2c: colorless oil. 1H NMR
(CDCl3): d = 0.89 (t, J = 6.8 Hz, 3 H), 1.26–1.38 (m, 10 H),
1.58–1.66 (m, 2 H), 2.04–2.08 (m, 2 H), 2.09 (s, 3 H), 2.64
(s, 2 H). 13C NMR (CDCl3): d = 14.1, 21.4, 22.7, 23.9, 29.1,
29.2, 29.4, 31.8, 42.2, 66.8, 73.5, 80.3, 168.3. FAB–MS:
m/z = 235 [M+ + H]. IR (KBr): 3291, 2929, 2123, 1757
cm–1. Anal. Calcd for C15H22O2: C, 77.88; H, 9.46. Found: C,
76.12; H, 9.53. 2d: colorless oil. 1H NMR (CDCl3): d = 0.92
(t, J = 7.0 Hz, 3 H), 1.33–1.38 (m, 4 H), 1.59–1.67 (m, 2 H),
2.03–2.08 (m, 2 H), 2.09 (s, 3 H), 2.64 (s, 2 H). 13C NMR
(CDCl3): d = 13.9, 21.4, 22.4, 23.6, 31.3, 42.2, 66.8, 73.6,
80.3, 168.4. HRMS–EI: m/z [M+] calcd for C12H16O2:
192.1150; found: 192.1143. IR (KBr): 3292, 2958, 2123,
1756 cm–1. 2e: colorless needles; mp 47 °C. 1H NMR
(CDCl3): d = 2.09 (s, 3 H), 2.69 (s, 2 H), 4.36 (s, 2 H), 6.97–
7.01 (m, 3 H), 7.24–7.31 (m, 2 H). 13C NMR (CDCl3): d =
21.2, 65.7, 73.4, 74.9, 77.7, 115.4, 121.9, 129.5, 158.4,
168.1. HRMS–EI: m/z [M+] calcd for C14H12O3: 228.0787;
found: 228.0786. IR (KBr): 3281, 2132, 1767 cm–1.
Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (c) Zeni, G.;
Larock, R. C. Chem. Rev. 2004, 104, 2285. (d) Alonso, F.;
Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
(e) Tietze, L. F.; Ila, H.; Bell, H. P. Chem. Rev. 2004, 104,
3453. (f) Soderberg, B. C. G. Coord. Chem. Rev. 2004, 248,
1085. (g) Vizer, S. A.; Yerzhanov, K. B.; Quntar, A. A. A.
A.; Dembitsky, V. M. Tetrahedron 2004, 60, 5499.
(h) Muzart, J. Tetrahedron 2005, 61, 5955. (i) Asao, N.
Synlett 2006, 1645. (j) Miki, K.; Uemura, S.; Ohe, K. Chem.
Lett. 2005, 34, 1068.
(2) Hydration of alkynes: (a) Fukuda, Y.; Utimoto, K. J. Org.
Chem. 1991, 56, 3729. (b) Casado, R.; Contel, M.; Laguna,
M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125,
11925. (c) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M.
Angew. Chem. Int. Ed. 2002, 41, 4563. (d) Teles, J. H.;
Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37,
1415. For recent examples of intramolecular cyclizations,
see: (e) Liu, Y.; Song, F.; Guo, S. J. Am. Chem. Soc. 2006,
128, 11332. (f) Genin, E.; Toullec, P. Y.; Antoniotti, S.;
Brancour, C.; Genet, J.-P.; Michelet, V. J. Am. Chem. Soc.
2006, 128, 3112. (g) Kang, J.-E.; Kim, H.-B.; Lee, J.-W.;
Shin, S. Org. Lett. 2006, 8, 3537. (h) Liu, Y.; Liu, M.; Guo,
S.; Tu, H.; Zhou, Y.; Gao, H. Org. Lett. 2006, 8, 3445.
(i) Buzas, A.; Gagosz, F. Org. Lett. 2006, 8, 515. (j) Asao,
N.; Sato, K.; Yamamoto, Y. Tetrahedron Lett. 2003, 44,
5675.
(3) 1,2-Migration of acyl group: (a) Mamane, V.; Gress, T.;
Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654.
(b) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 5802. (c) Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong,
R. J. Am. Chem. Soc. 2005, 127, 12468. (d) Johansson, M.
J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 18002. (e) Pujanauski, B. G.; Prasad, B. A. B.;
Sarpong, R. J. Am. Chem. Soc. 2006, 128, 6786. For 1,3-
migration of acyl group, see: (f) Cariou, K.; Mainetti, E.;
Fensterbank, L.; Malacria, M. Tetrahedron 2004, 60, 9745.
(g) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.
(h) Marion, N.; Diez-Gonzalez, S.; Fremont, P.; Noble, A.
R.; Nolan, S. P. Angew. Chem. Int. Ed. 2006, 45, 3647.
(i) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442.
(j) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc.
2006, 128, 7436. (k) Wang, S.; Zhang, L. J. Am. Chem. Soc.
2006, 128, 8414.
(4) Maurer, H.; Hopf, H. Eur. J. Org. Chem. 2005, 2702.
(5) (a) Kato, K.; Nishimura, A.; Yamamoto, Y.; Akita, H.
Tetrahedron Lett. 2001, 42, 4203. (b) Takayama, H.; Kato,
K.; Akita, H. Eur. J. Org. Chem. 2006, 644. (c) Kato, K.;
Matsuba, C.; Kusakabe, T.; Takayama, H.; Yamamura, S.;
Mochida, T.; Akita, H.; Peganova, T. A.; Vologdin, N. V.;
Gusev, O. V. Tetrahedron 2006, 62, 9988. (d) Kato, K.;
Yamamoto, Y.; Akita, H. Tetrahedron Lett. 2002, 43, 4915.
(e) Kato, K.; Yamamoto, Y.; Akita, H. Tetrahedron Lett.
2002, 43, 6587. (f) Kato, K.; Nouchi, H.; Ishikura, K.;
Takaishi, S.; Motodate, S.; Tanaka, H.; Okudaira, K.;
Mochida, T.; Nishigaki, R.; Shigenobu, K.; Akita, H.
Tetrahedron 2006, 62, 2545.
(6) Preparation of Substrates 2; General Procedure: To a
solution of trimethylsilyl acetylene (3.32 g, 33.8 mmol) in
THF (30 mL) under Ar was added n-BuLi (13.0 mL of 2.6
M in hexane, 33.8 mmol) at –78 °C and the mixture was
stirred for 0.5 h at 0 °C. After the solution was cooled to
–78 °C, the corresponding ester 1 (11.3 mmol) in THF (3 ×
8 mL) was slowly added dropwise. The mixture was stirred
(7) Reaction of 2; General Procedure: A 20-mL round-
bottomed flask, containing a magnetic stirring bar, catalyst
(0.015 mmol), 2 (0.3 mmol) and MeOH (5 mL) was fitted
with a Dimroth condenser capped with a rubber septum.
After being stirred for a certain period at 60 °C, the mixture
was diluted with EtOAc (20 mL) and washed with aq 3%
NaHCO3 (20 mL). The organic layers were separated, the
aqueous layer was extracted with EtOAc (30 mL), and
combined organic layers were dried with MgSO4 and
concentrated in vacuo. The crude product was purified by
column chromatography on silica gel. The fraction eluted
with hexane–EtOAc (100:1–50:1 and 10:1) afforded 3 and 4,
respectively. 3a: colorless oil. 1H NMR (CDCl3): d = 1.69–
1.78 (m, 1 H), 1.91–2.00 (m, 1 H), 2.22 (s, 3 H), 2.43 (dd,
J = 4.4, 16.8 Hz, 1 H), 2.58–2.62 (m, 2 H), 2.80 (dd, J = 9.6,
16.8 Hz, 1 H), 2.99–3.07 (m, 1 H), 3.66 (s, 3 H), 7.15–7.32
(m, 5 H). 13C NMR (CDCl3): d = 29.5, 32.8, 33.1, 34.9, 47.4,
Synlett 2007, No. 1, 63–66 © Thieme Stuttgart · New York