Published on Web 01/27/2007
Diastereomerically and Enantiomerically Pure
2,3-Disubstituted Pyrrolidines from 2,3-Aziridin-1-ols Using a
Sulfoxonium Ylide: A One-Carbon Homologative Relay Ring
Expansion
Jennifer M. Schomaker, Somnath Bhattacharjee, Jun Yan, and Babak Borhan*
Contribution from the Department of Chemistry, Michigan State UniVersity,
East Lansing, Michigan 48824
Received August 17, 2006; E-mail: borhan@cem.msu.edu
Abstract: An ylide-based aza-Payne rearrangement of 2,3-aziridin-1-ols leads to an efficient process for
the preparation of pyrrolidines. The aza-Payne rearrangement under basic reaction conditions favors the
formation of epoxy amines. Subsequent nucleophilic attack of the epoxide by the ylide yields a bis-anion,
which upon a 5-exo-tet ring-closure yields the desired pyrrolidine, thus completing the relay of the three-
membered to the five-membered nitrogen-containing ring system. This process takes place with complete
transfer of stereochemical fidelity and can be applied to sterically hindered aziridinols.
Introduction
3 + 2 cycloadditions of azomethine ylides with alkenes or
nitrones with cyclopropanes,4 oxidative decarboxylation-â-
Substituted pyrrolidines are important heterocycles by virtue
of their frequent appearance in a large number of biologically
active natural products and pharmaceuticals.1 Enantiomerically
pure pyrrolidines are also used as chiral auxiliaries for various
organic transformations.2 Conformationally restrained analogues
of proline are also being utilized in the synthesis of unnatural
oligomers as scaffolds for biological applications such as
antimicrobial activity.3 As such, much effort has been devoted
to the synthesis of pyrrolidines in enantiomerically and diaste-
reomerically pure form, including, but certainly not limited to,
iodination of amino acids,5 palladium-catalyzed carboamination
reactions,6 intramolecular cyclization of epoxy and halogenated
sulfones under basic conditions,7 acid-catalyzed cyclization of
vinylsilanes,8 intramolecular carbolithiation of homoallylic
amines,9 radical cyclizations,10 Brønsted acid-catalyzed intramo-
lecular hydroamination of alkenylamines,11 manipulations of
sugars from the chiral pool,12 various other metal-catalyzed
cyclizations,13 and ring-closing metathesis.14 Clearly, the im-
portance of pyrrolidines can be directly inferred from the
(1) (a) Mroczek, T.; Glowniak, K. Proc. Phytochem. Soc. Eur. 2002, 47, 1-46.
(b) Aurrecoechea, J. M.; Fernandez, A.; Gorgojo, J. M.; Saornil, C.
Tetrahedron 1999, 55, 7345-7362 and references cited therein. (c)
Braekman, J. C.; Daloze, D. In Studies in Natural Products Chemistry;
Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1990; Vol. 6, pp 421-466.
(d) Pichon, M.; Figadere, B. Tetrahedron: Asymmetry 1996, 7, 927-964.
(e) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435-446. (f) O’Hagan, D. Nat.
Prod. Rep. 1997, 14, 637-651. (g) Elbein, A.; Molyneux, R. I. In
Alkaloids: Chemical and Biological PerspectiVes; Pelletier, S. W., Ed.;
John Wiley: New York, 1990; Vol. 5, pp 1-54. (h) Asano, N.; Nash, R.
J.; Molyneux, R. J.; Fleet, G. W. Tetrahedron: Asymmetry 2000, 11, 1645-
1680. (i) Nishimura, Y. Jpn. J. Clin. Chem. 1993, 180-185. (j) O’Hagan,
D. Nat. Prod. Rep. 2000, 17, 436-446. (k) Patel, A. V.; Crabb, T. A.
Pyrroles, pyrrolines and pyrrolidines. Rodd’s Chemistry of Carbon
Compounds; Elsevier: Amsterdam, 1997; Vol. 4, Part A, pp 457-556. (l)
Uchide, N.; Kunio, O. J. Antimicrob. Chem. 2003, 52, 8-10. (m)
Wiedeman, P. E.; Trevillyan, J. M. Curr. Opin. InVest. Drugs 2003, 4,
412-420. (n) Garcia-Morena, I. M.; Rodriguez-Lucena, D.; Ortiz-Mellet,
C.; Garcia-Fernandez, J. M. Org. Lett. 2004, 6, 2003-2006. (o) Kam, T.;
Sim, K.; Lim, T. Tetrahedron Lett. 2001, 4721-4723. (p) Ohtsu, Y.;
Sasamura, H.; Tsurumi, Y.; Yoshimura, S.; Takase, S.; Hashimoto, M.;
Shibata, T.; Hino, M.; Fujii, T. J. Antibiot. 2003, 56, 682-688.
(2) (a) Huryn, D. M. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 1, pp 64-71. (b) Enders,
D.; Klatt, M. Synthesis 1996, 1403-1418. (c) Yamamoto, Y.; Hoshino, J.;
Fujimoto, Y.; Ohmoto, J.; Sawadi, S. Synthesis 1993, 298-302. (d) Koh,
K.; Ben, R. N.; Durst, T. Tetrahedron Lett. 1994, 35, 375-378. (e) Corey,
E. J.; Yuen, P.-W.; Hannon, F. J.; Wierda, D. A. J. Org. Chem. 1990, 55,
784-786. (f) DeNinno, M. P.; Perner, R. J.; Lijewski, L. Tetrahedron Lett.
1990, 31, 7415-7418. (g) Jones, T. J.; Mohan, J. J.; Xavier, L. C.;
Blacklock, T. J.; Mathre, D. J.; Sohar, P.; Jones, E. T.; Reamer, R. A.;
Roberts, F. E.; Grabowski, E. J. J. Org. Chem. 1991, 56, 763-769.
(3) (a) Porter, E. A.; Wang, X.; Schmitt, M. A.; Gellman, S. H. Org. Lett.
2002, 4, 3317-3319. (b) Porter, E. A.; Weisblum, B.; Gellman, S. H. J.
Am. Chem. Soc. 2002, 124, 7324-7330.
(4) (a) Pearson, W. H.; Clark, R. B. Tetrahedron Lett. 1997, 38, 7669-7672.
(b) Bashiardes, G.; Safir, I.; Mohamed, A. S.; Barbot, F.; Laduranty, J.
Org. Lett. 2003, 5, 4915-4918. (c) Bashiardes, G.; Safir, I.; Barbot, F.;
Laduranty, J. Tetrahedron Lett. 2003, 44, 8417-8420. (d) Galliford, C.
V.; Beenen, M. A.; Nguyen, S. T.; Scheidt, K. A. Org. Lett. 2003, 5, 3487-
3490. (e) Young, I. S.; Williams, J. L.; Kerr, M. A. Org. Lett. 2005, 7,
953-955. (f) Pearson, W. H.; Dietz, A.; Stoy, P. Org. Lett. 2004, 6, 1005-
1008.
(5) (a) Boto, A.; Hernandez, R.; de Leon, Y.; Suarez, E. J. Org. Chem. 2001,
66, 7796-7803. (b) Boto, A.; Hernandez, R.; Suarez, E. Tetrahedron Lett.
2000, 41, 2495-2498.
(6) (a) Nakhla, J. S.; Kampf, J. W.; Wolfe, J. P. J. Am. Chem. Soc. 2006, 128,
2893-2901. (b) Ney, J. E.; Hay, M. B.; Yang, Q.; Wolfe, J. P. AdV. Synth.
Catal. 2005, 347, 1614-1620. (c) Beaudoin Bertrand, M.; Wolfe, J. P.
Tetrahedron 2005, 61, 6447-6459. (d) Yang, Q.; Ney, J. E.; Wolfe, J. P.
Org. Lett. 2005, 7, 2575-2578. (e) Ney, J. E.; Wolfe, J. P. Angew. Chem.,
Int. Ed. 2004, 43, 3605-3608.
(7) (a) Wang, Q.; Sasaki, N. A.; Potier, P. Tetrahedron Lett. 1998, 39, 5755-
5758. (b) Sasaki, N. A.; Hashimoto, C.; Potier, P. Tetrahedron Lett. 1987,
28, 6069-6072. (c) Sasaki, N. A.; Pauly, R.; Fontaine, C.; Chiaroni, A.;
Riche, C.; Potier, P. Tetrahedron Lett. 1994, 35, 241-244. (d) Sasaki, N.
A.; Dockner, M.; Chiaroni, A.; Riche, C.; Potier, P. J. Org. Chem. 1997,
62, 765-770. (e) Sasaki, N. A.; Sagnard, I. Tetrahedron 1994, 50, 7093-
7108. (f) Dockner, M.; Sasaki, N. A.; Potier, P. Heterocycles 1996, 42,
529-532. (g) Dockner, M.; Sasaki, N. A.; Riche, C.; Potier, P. Liebigs.
Ann./Recueil 1997, 1267-1272. (h) Back, T. G.; Parvez, M.; Zhai, H. J.
Org. Chem. 2003, 68, 9389-9393.
(8) Miura, K.; Hondo, T.; Nakagawa, T.; Takahashi, T.; Hosomi, A. Org. Lett.
2000, 2, 385-388 and references cited therein.
(9) Coldham, I.; Hufton, R.; Price, K. N.; Rathmell, R. E.; Snowden, D. J.;
Vennall, G. P. Synthesis 2001, 10, 1523-1531.
(10) (a) Besev, M.; Engman, L. Org. Lett. 2002, 4, 3023-3025. (b) Aurre-
coechea, J. M.; Fernandez, A.; Gorgojo, J. M.; Saornil, C. Tetrahedron
1999, 55, 7345-7362 and references cited therein.
(11) Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471-1474.
9
1996
J. AM. CHEM. SOC. 2007, 129, 1996-2003
10.1021/ja065833p CCC: $37.00 © 2007 American Chemical Society