LETTER
New Cyclic Aspartic Acid and N-Glucosyl Asparagine Mimetics
3253
32.6 (d, C-4), 31.6 (t, C-5), 28.0 (q, 3 × C, t-Bu), 9.0 (q,
CHCH3).
Acknowledgment
(2R,4R)-6: [a]D22 –0.55 (c = 1.02, CHCl3). 1H NMR (400
MHz): d = 7.25–7.38 (m, 4 H, Ph), 7.17–7.23 (m, 1 H, Ph),
4.00 (q, J = 6.7 Hz, 1 H, CHMe), 3.86–3.91 (m, 1 H, 2-H),
3.65 (s, 3 H, OCH3), 2.86 (dt, J = 2.3, 12.1 Hz, 1 H, 6-H),
2.45 (dm, J = 11.7 Hz, 1 H, 6-H), 2.11–2.27 (m, 3 H,
CH2CO2Me, 3-H), 1.86–1.98 (m, 1 H, 4-H), 1.46–1.56 (m, 2
H, 3-H, 5-H), 1.51 (s, 9 H, t-Bu), 1.25 (d, J = 6.7 Hz, 3 H,
CHCH3), 1.11 (dq, J = 4.5, 12.4 Hz, 1 H, 5-H). 13C NMR
(100 MHz): d = 173.0 (s, CO), 172.9 (s, CO), 147.2 (s, Ph),
128.2 (d, 2 × C, Ph), 127.0 (d, 2 × C, Ph), 126.6 (d, Ph), 80.6
(s, t-Bu), 61.7 (d, CHMe), 57.1 (d, C-2), 51.4 (q, OCH3),
45.5 (t, C-6), 41.2 (t, CH2CO2Me), 34.9 (t, C-3), 32.1 (t, C-
5), 29.6 (d, C-4), 28.3 (q, 3 × C, t-Bu), 22.0 (q, CHCH3).
(9) Sugg, E. E.; Griffin, J. F.; Portoghese, P. S. J. Org. Chem.
1985, 50, 5032.
The authors thank the Ministry of Instruction, University and
Research (MIUR, Italy) for financial support (projects PRIN
2002031849 and 2004031072), and Ente Cassa di Risparmio di
Firenze for granting funds to the Department of Organic Chemistry
for the acquisition of a 400 MHz NMR spectrometer. Dr. C. Faggi
is gratefully thanked for X-ray determination.
References and Notes
(1) (a) Mukhtar, T. A.; Wright, G. D. Chem. Rev. 2005, 105,
529. (b) Di Giambattista, M.; Nyssen, E.; Percher, A.;
Cocito, C. Biochemistry 1990, 29, 9203. (c) Reed, J. W.;
Purvis, M. B.; Kingston, D. G. I.; Blot, A.; Gossele, F. J.
Org. Chem. 1989, 54, 1161. (d) Kessler, H.; Kühn, M.;
Löschner, T. Liebigs Ann. Chem. 1986, 1. (e) Hollstein, U.
Chem. Rev. 1974, 74, 625. (f) Vanderhaeghe, H.;
(10) The X-ray CIF file for this structure has been deposited at the
Cambridge Crystallographic Data Centre and allocated with
the deposition number CCDC 607916. Copies of the data
can be obtained free of charge from CCDC, 12 Union Road,
Cambridge, CB2 1EZ, UK (e-mail:
deposit@ccdc.cam.ac.uk; internet://www.ccdc.cam.ac.uk).
(11) Esteves, A. P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.;
Oliveira-Campos, A. M. F.; Machalicky, O.; Mendonça, A.
J. Tetrahedron 2005, 61, 8625.
(12) A slurry of diester (2S,4R)-6 (358 mg, 0.99 mmol) in THF
(0.5 mL) was treated dropwise with an aq 1 M NaOH
solution (1.6 mL, 1.6 mmol). The mixture was stirred at r.t.
for 3 h and concentrated. The residue was dissolved in THF
(1.0 mL) and NMM (0.109 mL, 0.99 mmol) and CDMT (174
mg, 0.99 mmol) were added. The reaction mixture was
stirred at r.t. for 30 min and then a solution of 2,3,4,6-tetra-
O-acetyl-b-D-glucopyranosylamine (321 mg, 0.99 mmol) in
THF (1.3 mL) was added. The resulting mixture was stirred
at r.t. overnight, diluted with EtOAc, and washed
Parmentier, G. J. Am. Chem. Soc. 1960, 82, 4414.
(2) (a) Machetti, F.; Cordero, F. M.; De Sarlo, F.; Papini, A. M.;
Alcaro, M. C.; Brandi, A. Eur. J. Org. Chem. 2004, 2928.
(b) Sata, N. U.; Kuwahara, R.; Murata, Y. Tetrahedron Lett.
2002, 43, 115. (c) Golubev, A. S.; Schedel, H.; Radics, G.;
Sieler, J.; Burger, K. Tetrahedron Lett. 2001, 42, 7941.
(d) Beaulieu, P. L.; Anderson, P. C.; Cameron, D. R.;
Croteau, G.; Gorys, V.; Grand-Maître, C.; Lamarre, D.;
Liard, F.; Paris, W.; Plamondon, L.; Soucy, F.; Thibeault,
D.; Wernic, D.; Yoakim, C. J. Med. Chem. 2000, 43, 1094.
(e) Ornstein, P. L.; Arnold, M. B.; Lunn, W. H. W.; Heinz,
L. J.; Leander, J. D.; Lodge, D.; Schoepp, D. D. Bioorg.
Med. Chem. Lett. 1998, 8, 389. (f) Bellier, B.; Da
Nascimento, S. H.; Gincel, E.; Roques, B. P.; Garbay, C.
Bioorg. Med. Chem. Lett. 1998, 8, 1419. (g) Skiles, J. W.;
Giannousis, P. P.; Fales, K. R. Bioorg. Med. Chem. Lett.
1996, 6, 963. (h) Pellicciari, R.; Natalini, B.; Luneia, R.;
Marinozzi, M.; Marinella, R.; Rosato, G. C.; Sadeghpour, B.
M.; Snyder, J. P.; Monahan, J. B.; Moroni, F. Med. Chem.
Res. 1992, 2, 491. (i) Hays, S. J.; Malone, T. C.; Johnson, G.
J. Org. Chem. 1991, 56, 4084. (j) Ornstein, P. L.; Schoepp,
D. D.; Arnold, M. B.; Leander, J. D.; Lodge, D.; Paschal, J.
W.; Elzey, T. J. Med. Chem. 1991, 34, 90.
sequentially with H2O and brine. The separated organic layer
was dried over Na2SO4, filtered, and concentrated. The
residue was purified by column chromatography on silica
gel (eluent: PE–EtOAc = 2:3) to afford (2S,4R)-7 (423 mg,
63%) as a white solid.
(2S,4R)-7: [a]D27 –32.65 (c = 0.525, CHCl3). 1H NMR (400
MHz): d = 7.23–7.34 (m, 3 H, Ph), 7.14–7.19 (m, 2 H, Ph),
6.18 (d, J = 9.3 Hz, 1 H, NH), 5.28 (t, J = 9.5 Hz, 1 H, 3¢-H),
5.19 (t, J = 9.4 Hz, 1 H, 1¢-H), 5.04 (t, J = 9.7 Hz, 1 H, 4¢-H),
4.87 (t, J = 9.6 Hz, 1 H, 2¢-H), 4.29 (dd, J = 4.2, 12.5 Hz, 1
H, 6¢-H), 4.04 (dd, J = 2.0, 12.5 Hz, 1 H, 6¢-H), 3.97 (q, J =
7.0 Hz, 1 H, CHMe), 3.78 (ddd, J = 2.0, 4.2, 10.1 Hz, 1 H,
5¢-H), 3.00 (dm, J = 11.4 Hz, 1 H, 6-H), 2.77 (dd, J = 2.9,
11.2 Hz, 1 H, 2-H), 2.07 (A part of an ABX system, J = 6.7,
14.6 Hz, 1 H, CHHCON), 2.06 (s, 3 H, CH3CO), 2.02 (s, 3
H, CH3CO), 2.00 (s, 3 H, CH3CO), 1.99 (s, 3 H, CH3CO),
1.96 (B part of an ABX system, J = 7.0, 14.6 Hz, 1 H,
CHHCON), 1.79 (dm, J = 12.4 Hz, 1 H, 3-H), 1.71 (tm, J =
11.5 Hz, 1 H, 6-H), 1.50–1.60 (m, 2 H, 4-H, 5-H), 1.53 (s, 9
H, t-Bu), 1.48 (d, J = 7.0 Hz, 3 H, CHCH3), 1.36 (q, J = 11.8
Hz, 1 H, 3-H), 1.19–1.30 (m, 1 H, 5-H). 13C NMR (100
MHz): d = 173.1 (s, CO), 171.6 (s, CO), 171.0 (s, CO), 170.6
(s, CO), 169.8 (s, CO), 169.5 (s, CO), 137.7 (s, Ph), 128.9 (d,
2 × C, Ph), 127.7 (d, 2 × C, Ph), 127.2 (d, Ph), 80.9 (s, t-Bu),
78.0 (d, C-1¢), 73.5 (d, C-5¢), 72.6 (d, C-3¢), 70.5 (d, C-2¢),
68.1 (d, C-4¢), 64.5 (d, C-2), 61.6 (t, C-6¢), 59.4 (d, CHMe),
43.8 (t, C-6), 43.2 (t, CH2CON), 36.3 (t, C-3), 32.6 (d, C-4),
31.3 (t, C-5), 28.1 (q, 3 × C, t-Bu), 20.7 (q, CH3CO), 20.6 (q,
CH3CO), 20.5 (q, 2 × C, CH3CO), 18.5 (q, CH3CH).
(13) A solution of (2S,4R)-7 (105 mg, 0.155 mmol) in MeOH (1.6
mL) and AcOH (18 mL, 0.310 mmol) was hydrogenated in
(3) Toniolo, C. Int. J. Peptide Protein Res. 1990, 35, 287.
(4) (a) Varki, A. Glycobiology 1993, 3, 97. (b) Dwek, R. A.
Chem. Rev. 1996, 96, 683. (c) Rudd, P. M.; Elliott, T.;
Cresswell, P.; Wilson, I. A.; Dwek, R. A. Science 2001, 291,
2370. (d) Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev. 2005,
34, 58.
(5) Gillard, J.; Abraham, A.; Anderson, P. C.; Beaulieu, P. L.;
Bogri, T.; Bousquet, Y.; Grenier, L.; Guse, I.; Lavallée, P. J.
Org. Chem. 1996, 61, 2226.
(6) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P.
Synthesis 1994, 639; and references cited therein.
(7) For examples of oxidation of 4-hydroxypipecolic acid
derivatives with other oxidants, see refs. 2c, 2g and 2j.
(8) (2R,4S)-6: [a]D24 6.45 (c = 0.93, CHCl3). 1H NMR (400
MHz): d = 7.49–7.52 (m, 2 H, Ph), 7.28–7.34 (m, 2 H, Ph),
7.19–7.24 (m, 1 H, Ph), 4.01 (q, J = 6.9 Hz, 1 H, CHMe),
3.65 (s, 3 H, OCH3), 3.27 (dd, J = 2.8, 10.9 Hz, 1 H, 2-H),
2.44 (dt, J = 3.5, 11.4 Hz, 1 H, 6-H), 2.22 (d, J = 7.0 Hz, 2
H, CH2CO2Me), 2.15 (dt, J = 2.5, 11.6 Hz, 1 H, 6-H), 1.92
(dm, J = 12.3 Hz, 1 H, 3-H), 1.76–1.88 (m, 1 H, 4-H), 1.43–
1.57 (m, 2 H, 3-H, 5-H), 1.48 (s, 9 H, t-Bu), 1.32 (d, J = 6.9
Hz, 3 H, CHCH3), 1.12 (dq, J = 3.8, 12.0 Hz, 1 H, 5-H). 13
C
NMR (100 MHz): d = 173.1 (s, CO), 172.9 (s, CO), 143.4 (s,
Ph), 127.9 (d, 2 × C, Ph), 127.8 (d, 2 × C, Ph), 126.6 (d, Ph),
80.9 (s, t-Bu), 64.3 (d, C-2), 57.3 (d, CHMe), 51.5 (q,
OCH3), 43.2 (t, C-6), 40.7 (t, CH2CO2Me), 36.2 (t, C-3),
Synlett 2006, No. 19, 3251–3254 © Thieme Stuttgart · New York