Communication
ChemComm
2 (a) W. R. Schoen, J. M. Pisano, K. Prendergast, M. J. Wyvratt,
M. H. Fisher, K. Cheng, W. W. S. Chan, B. Butler, G. R. Smith and
R. G. Ball, J. Med. Chem., 1994, 37, 897; (b) R. J. DeVita, R. Bochis,
A. J. Frontier, N. Kotliar, M. H. Fisher, W. R. Schoen, M. J. Wyvratt,
K. Cheng, W. W. S. Chan, B. Butler, T. M. Jacks, G. J. Hickey,
K. D. Schleim, K. Leung, Z. Chen, S. H. L. Chiu, W. P. Feeney,
P. K. Cunningham and R. G. Smith, J. Med. Chem., 1998, 41, 1716;
(c) K. Kondo, H. Ogawa, H. Yamashita, H. Miyamoto, M. Tanaka,
K. Nakaya, K. Kitano, Y. Yamamura, S. Nakamura, T. Onogawa,
T. Mori and M. Tominaga, Bioorg. Med. Chem., 1999, 7, 1743;
(d) G. Cao, A. M. Escribano, M. C. Fernandez, T. Fields, D. L.
Genert, C. L. Cioffi, R. J. Herr, N. B. Mantlo, D. L. N. E. M. Martin,
H. A. I. Mateo, D. R. Mayhugh and X. Wang, Compounds and methods
for treating dyslipidemia, WO Pat., WO2005037796 A1, 2005;
(e) S. Loison, M. Cottet, H. Orcel, H. Adihou, R. Rahmeh,
L. Lamarque, E. Trinquet, E. Kellenberger, M. Hibert, T. Durroux,
B. Mouillac and D. Bonnet, J. Med. Chem., 2012, 55, 8588.
3 (a) L. Cui, G. Zhang, Y. Peng and L. Zhang, Org. Lett., 2009, 11, 1225;
(b) H. He, W.-B. Liu, L.-X. Dai and S.-L. You, Angew. Chem., Int. Ed.,
2010, 49, 1496; (c) K.-Y. Ye, L.-X. Dai and S.-L. You, Org. Biomol.
Chem., 2012, 10, 5932; (d) J. S. Arnold, E. T. Mwenda and
H. M. Nguyen, Angew. Chem., Int. Ed., 2014, 53, 3688; (e) G. Zhan,
M.-L. Shi, Q. He, W. Du and Y.-C. Chen, Org. Lett., 2015, 17, 4750;
( f ) S. Undeela, G. Ravikumar, J. B. Nanubolu, K. K. Singarapu and
R. S. Menon, Chem. Commun., 2016, 52, 4824; (g) L.-Z. Yu, Q. Xu,
X.-Y. Tang and M. Shi, ACS Catal., 2016, 6, 526; (h) L.-Z. Yu, Z.-Z.
Zhu, X.-B. Hu, X.-Y. Tang and M. Shi, Chem. Commun., 2016,
52, 6581; (i) C. Fader, S. Budde, G. Kachkovskyi, D. Rackl and
O. Reiser, J. Org. Chem., 2018, 83, 12192.
4 (a) J. M. Kraus, C. L. M. J. Verlinde, M. Karimi, G. I. Lepesheva,
M. H. Gelb and F. S. Buckner, J. Med. Chem., 2009, 52, 1639;
(b) T. N. Glasnov, W. Stadlbauer and C. O. Kappe, J. Org. Chem., 2005,
70, 3864; (c) G. Claassen, E. Brin, C. Crogan-Grundy, M. T. Vaillancourt,
H. Z. Zhang, S. X. Cai, J. Drewe, B. Tseng and S. Kasibhatla, Cancer Lett.,
2009, 274, 243; (d) H. M. Hassanin and S. M. El-edfawy, Heterocycles,
2012, 85, 2421; (e) J. P. Michael, Nat. Prod. Rep., 1995, 12, 465;
( f ) J. B. Hanuman and A. Katz, Nat. Prod. Lett., 1993, 3, 227.
5 (a) D. V. Kadnikov and R. C. Larock, J. Org. Chem., 2004, 69, 6772;
(b) C.-S. Jia, Y.-W. Dong, S.-J. Tu and G.-W. Wang, Tetrahedron, 2007,
63, 892; (c) D.-F. Fernando, L.-S. Jesffls, P.-M. Elena, B. David,
M.-A. Rosa, L.-P. Antonio and C. Jiri, ChemCatChem, 2009, 1, 241;
(d) W.-P. Mai, G.-C. Sun, J.-T. Wang, G. Song, P. Mao, L.-R. Yang,
J.-W. Yuan, Y.-M. Xiao and L.-B. Qu, J. Org. Chem., 2014, 79, 8094;
(e) R. Manikandan and M. Jeganmohan, Org. Lett., 2014, 16, 3568;
( f ) K. H. V. Reddy, J.-D. Brion, S. Messaoudi and M. Alami, J. Org.
Chem., 2016, 81, 424; (g) T. Vacala, L. P. Bejcek, C. G. Williams,
A. C. Williamson and P. A. Vadola, J. Org. Chem., 2017, 82, 2558;
(h) C. Wang, J. Qiao, X. Liu, H. Song, Z. Sun and W. Chu, J. Org.
Chem., 2018, 83, 1422; (i) J.-B. Peng, B. Chen, X. Qi, J. Ying and
X.-F. Wu, Org. Biomol. Chem., 2018, 1632.
6 (a) G. C. G. Pais, X. Zhang, C. Marchand, N. Neamati, K. Cowansage,
E. S. Svarovskaia, V. K. Pathak, Y. Tang, M. Nicklaus, Y. Pommier
and T. R. Burke, J. Med. Chem., 2002, 45, 3184; (b) M. L. Barreca,
S. Ferro, A. Rao, L. D. Luca, M. Zappala, A.-M. Monforte, Z. Debyser,
M. Witvrouw and A. Chimirri, J. Med. Chem., 2005, 48, 7084; (c) Y.-S.
Wu, M. S. Coumar, J.-Y. Chang, H.-Y. Sun, F.-M. Kuo, C.-C. Kuo,
Y.-J. Chen, C.-Y. Chang, C.-L. Hsiao, J.-P. Liou, C.-P. Chen, H.-T. Yao,
Y.-K. Chiang, U.-K. Tan, C.-T. Chen, C.-Y. Chu, S.-Y. Wu, T.-K. Yeh,
C.-Y. Lin and H.-P. Hsieh, J. Med. Chem., 2009, 52, 4941.
Scheme 6 Control experiments.
6-annulation reaction with polar solvents such as THF and DMSO
(entries 9 and 10).
On the basis of the developed reaction conditions, we scrutinized
the validation of the reaction employing a wide variety of in situ
generated o-ethynylanilides (3, Scheme 3), and it was observed that
electronically rich and poor substrates worked well in this reaction
to obtain quinolinone derivatives 6a–o in a high yield (84–95%). The
quinolinone derivatives were characterized by FTIR, NMR and ESI
MS spectroscopy, and also the structural elucidation of 6a through
single-crystal XRD analyses.10b
To understand the role of C–H, relatively less acidic C–H was
employed by changing the substrate to N-acetyl-2-phenylethynyl
anilines (10a, Scheme 4) instead of 3, and a 5-annulation reaction
occurred through N–C coupling using the ZnCl2 catalyst under the
same reaction conditions. Valuable 3-acyl-2-aryl indoles (12a) were
easily produced in a high yield (84%). The substrate scope of
the rapid (2–4 h) reaction was also verified to obtain 3-acyl indoles
(12a–i) in a good yield (72–88%). Interestingly, 1,3-acyl and
1,3-benzoyl group migration was observed,11 and the other possible
products (11) were found in traces only when R1 = Ph (12e and 12i).
The plausible mechanism (ESI†) for ZnCl2 catalysed 7- and
5-annulation with 1,3-migration and I2 tuned 6-annulation with
nonconvensional 1,3 H-shift are displayed in Scheme 5 along with
intermediate trapping, control, and labeling experiments (Scheme 6).
In conclusion, we discovered diverse catalytic 5-, 6- and
7-cyclization processes with a concerted 1,3-migration to achieve
three valuable heterocycles from 2-ethynyl anilides with excellent
selectivity, yield and operational simplicity, which will find
considerable application in synthetic chemistry and the allied
branches of science and medicinal chemistry.
7 (a) H. Johansson, A. Urruticoechea, I. Larsen and D.-S. Pedersen,
J. Org. Chem., 2015, 80, 471; (b) M.-N. Zhao, L. Ran, M. Chen,
W.-H. Ren, Y.-Y. Wang and Z.-H. Guan, ACS Catal., 2015, 5, 1210;
(c) T. Watanabe, Y. Mutoh and S. Saito, J. Am. Chem. Soc., 2017,
139, 7749; (d) L. Ilies, M. Isomura, S.-C. Yamauchi, T. Nakamura and
E. Nakamura, J. Am. Chem. Soc., 2017, 139, 23.
Conflicts of interest
8 (a) S. Enthaler, ACS Catal., 2013, 3, 150; (b) X.-F. Wua and H. Neumann,
Adv. Synth. Catal., 2012, 354, 3141; (c) L. Ye, X. Zhu, H. Yuan, Q. Sun,
B. Zhou, X. Han, Z. Zhang and X. Lu, Green Chem., 2018, 20, 4287.
9 (a) B. Godoi, R. F. Schumacher and G. Zeni, Chem. Rev., 2011,
111, 2937; (b) Y. Takeda, R. Kajihara, N. Kobayashi, K. Noguchi
and A. Saito, Org. Lett., 2017, 19, 6744.
There are no conflicts to declare.
Notes and references
1 (a) A. Arcadi, S. Cacchi, G. Fabrizi, F. Manna and P. Pace, Synlett,
1998, 446; (b) A. Arcadi, A. Inesi, F. Marinelli, L. Rossi and 10 (a) CCDC 1911211 (5e); (b) CCDC 1911210 (6a).
M. Verdecchia, Eur. J. Org. Chem., 2007, 2430; (c) C.-P. Chuang and 11 For allyl group migration of 3o-amines: M.-G. Rong, T.-Z. Qin and
Y.-J. Chen, Tetrahedron, 2016, 72, 1911.
W. Zi, Org. Lett., 2019, 21, 5421.
This journal is ©The Royal Society of Chemistry 2020
Chem. Commun., 2020, 56, 474--477 | 477