S. Groysman, E. Sergeeva, I. Goldberg, M. Kol
FULL PAPER
2.81 (dt, 2JH,H = 10.1, 3JH,H = 4.5 Hz, 2 H, NCH2CH2O), 2.45 2.41
(CH2), 58.5 (OCH3), 57.9 (CH2), 56.1 (CH2), 13.4 (Zn-CH2CH3),
–1.8 (Zn-CH2CH3) ppm.
(ddd, 2JH,H = 13.4, 3JH,H = 9.0, 3JH,H = 4.5 Hz, 2 H, NCH2CH2O),
2
3
2.21 (dt, JH,H = 13.4, JH,H = 4.2 Hz, 2 H, NCH2CH2O), 1.56 (t,
Supporting Information (see footnote on the first page of this arti-
cle) includes VT NMR spectra for complexes 1–3.
3JH,H = 8.1 Hz, 3 H, Zn-CH2CH3), 0.49 (q, JH,H = 8.1 Hz, 2 H,
3
Zn-CH2CH3) ppm. 1H NMR (400 MHz, C7D8, 210 K, selected res-
onances): δ = ca. 3.1 (br. s, 2 H, PhCH2N), 2.89 (br. s, 2 H,
NCH2CH2O), 2.84 (s, 6 H, OCH3), 2.60 (br. s, 2 H, NCH2CH2O),
2.29 (br. s, 2 H, NCH2CH2O), 1.87 (br. s, 2 H, NCH2CH2O), 1.76
Acknowledgments
3
3
(t, JH,H = 8.0 Hz, 3 H, Zn-CH2CH3), 0.69 (q, JH,H = 8.1 Hz, 2
H, Zn-CH2CH3) ppm.
We thank the Israel Science Foundation and the United States-
Israel Binational Science Foundation for financial support. We
thank Adi Yeori for helpful discussions.
Synthesis of 2: Lig2H (165 mg, 0.62 mmol) was dissolved in ether
(2 mL), cooled to –35 °C, and added slowly to a pre-cooled solu-
tion of ZnEt2 in hexane (1.0 , 0.63 mL). The resulting bright yel-
low solution was warmed to room temp. and stirred for 1 h. The
solvent was removed under reduced pressure, the resulting bright
yellow solid was dissolved in diethyl ether (ca. 3 mL overall) and
the solution was left at –35 °C for 2 days. Colorless crystals of X-
ray quality were separated from the solution, washed with cold
ether and dried under reduced pressure to afford 2 (157 mg,
0.44 mmol, 71%). C34H58N2O6Zn2 (721.61): calcd. C 56.59, H 8.10,
[1] G. Parkin, Chem. Rev. 2004, 104, 699.
[2] S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry,
University Science Books, Mill Valley, CA, 1994, p. 354.
[3] G. Parkin, Chem. Commun. 2000, 1971.
[4] N. N. Murthy, K. D. Karlin, J. Chem. Soc., Chem. Commun.
1993, 1236.
[5] H. Adams, N. A. Bailey, D. E. Fenton, Q.-Y. He, J. Chem. Soc.,
Dalton Trans. 1997, 1533.
[6] L. M. Berreau, R. A. Allred, M. M. Makowska-Grzyska,
A. M. Arif, Chem. Commun. 2000, 1423.
[7] M. Ray, B. S. Hammes, G. P. A. Yap, A. L. Rheingold, A. S.
Borovik, Inorg. Chem. 1998, 37, 1527.
[8] A. Abufarag, H. Vahrenkamp, Inorg. Chem. 1995, 34, 2207.
[9] R. Burth, A. Stange, M. Schäfer, H. Vahrenkamp, Eur. J. Inorg.
Chem. 1998, 1759.
[10] H. Adams, N. A. Bailey, D. E. Fenton, Q.-Y. He, J. Chem. Soc.,
Dalton Trans. 1996, 2857.
[11] A. Trösch, H. Vahrenkamp, Eur. J. Inorg. Chem. 1998, 827.
[12] A. Trösch, H. Vahrenkamp, Inorg. Chem. 2001, 40, 2305.
[13] A. Abufarag, H. Vahrenkamp, Inorg. Chem. 1995, 34, 3279.
[14] H. Adams, N. A. Bailey, C. O. Rodriguez de Bazan, D. E. Fen-
ton, Q.-Y. He, J. Chem. Soc., Dalton Trans. 1996, 2233.
[15] Y. Inoue, K. Matyjaszewski, Macromolecules 2003, 36, 7432.
[16] Y. Inoue, K. Matyjaszewski, Macromolecules 2004, 37, 4014.
[17] S. Groysman, E. Sergeeva, I. Goldberg, M. Kol, Inorg. Chem.
2005, 44, 8188.
[18] C. K. Williams, L. E. Breyfogle, S. K. Choi, W. Nam, V. G.
Young Jr, M. A. Hillmyer, W. B. Tolman, J. Am. Chem. Soc.
2003, 125, 11350.
[19] M. H. Chisholm, C.-C. Lin, J. C. Gallucci, B.-T. Ko, Dalton
Trans. 2003, 406.
[20] S. Groysman, I. Goldberg, M. Kol, E. Genizi, Z. Goldschmidt,
Organometallics 2004, 23, 1880.
[21] S. Groysman, I. Goldberg, Z. Goldschmidt, M. Kol, Inorg.
Chem. 2005, 44, 5073.
[22] S. Groysman, E. Tshuva, I. Goldberg, M. Kol, Z. Goldsch-
midt, M. Shuster, Organometallics 2004, 23, 5291.
[23] E. Bukhaltsev, I. Goldberg, A. Vigalok, Organometallics 2005,
24, 5732.
1
N 3.88; found C 56.27, H 8.25, 3.86. H NMR (400 MHz, C6D6,
4
4
300 K): δ = 7.05 (d, JH,H = 1.9 Hz, 2 H, Ar-H), 6.66 (d, JH,H
=
2.1 Hz, 2 H, Ar-H), 3.83 (s, 2 H, PhCH2N), 3.13 (br. s, 4 H,
NCH2CH2O), 2.86 (s, 6 H, OCH3), 2.85 (br. s, 4 H, NCH2CH2O),
3
2.51 (s, 3 H, Ar-CH3), 2.29 (s, 3 H, Ar-CH3), 1.11 (t, JH,H
=
3
8.1 Hz, 3 H, Zn-CH2CH3), 0.40 (q, JH,H = 8.1 Hz, 2 H, Zn-
CH2CH3) ppm. 1H NMR (400 MHz, C7D8, 301 K, selected reso-
nances): δ = 3.65 (s, 2 H, PhCH2N), 3.07 (br. s, 4 H, NCH2CH2O),
2.90 (s, 6 H, OCH3), 2.61 (br. s, 4 H, NCH2CH2O), 2.47 (s, 3 H,
3
Ar-CH3), 2.29 (s, 3 H, Ar-CH3), 1.51 (t, JH,H = 8.1 Hz, 3 H, Zn-
CH2CH3), 0.38 (q, JH,H = 8.1 Hz, 2 H, Zn-CH2CH3) ppm. 1H
3
NMR (400 MHz, C7D8, 210 K, selected resonances): δ = 2.85 (s, 3
3
H, OCH3), 2.77 (s, 3 H, OCH3), 1.79 (t, JH,H = 8.0 Hz, 3 H, Zn-
CH2CH3), 0.40 (br. s, 1 H, Zn-CHHCH3), 0.31(br. s, 1 H, Zn-
CHHCH3) ppm. 13C NMR (100.58 MHz, C6D6, 300 K): δ = 161.4
(CO), 132.4 (CH), 129.5 (CH), 128.4 (C), 124.1 (C), 123.4 (C), 68.9
(CH2), 59.3 (CH2), 58.4 (OCH3), 53.2 (CH2), 20.8 (Ar-CH3), 17.8
(Ar-CH3), 13.7 (Zn-CH2CH3), –1.7 (Zn-CH2CH3) ppm.
Synthesis of 3: Lig3H (51 mg, 0.13 mmol) was dissolved in an ether/
THF mixture (5 mL) and added to a solution of ZnEt2 in hexane
(1.0 , 0.13 mL). The resulting dark yellow solution was stirred for
1.5 h. The solvent was removed under reduced pressure, and the
resulting yellow solid was washed with pentane (ca. 2 mL) and
ether (2 mL) and dried under reduced pressure to afford 3 (47 mg,
74%). X-ray quality crystals were obtained upon recrystallization
from ether. C30H46Br4N2O6Zn2 (981.09): calcd. C 66.07, H 10.52,
N 7.97; found C 66.11, H 10.77, N 7.88. 1H NMR (400 MHz,
4
C6D6, 300 K): δ = 7.82 (d, JH,H = 2.6 Hz, 2 H, Ar-H), 6.86 (d,
4JH,H = 2.6 Hz, 2 H, Ar-H), 3.06 (s, 2 H, PhCH2N), 2.80 (s, 6 H,
[24] K. Matsufuji, H. Shiraishi, Y. Miyasato, T. Shiga, M. Ohba, T.
3
OCH3), 2.69 (t, JH,H = 5.4 Hz, 4 H, NCH2CH2O), 2.24 (br. s, 2
¯
Yokoyama, H. Okawa, Bull. Chem. Soc. Jpn. 2005, 78, 851.
3
H, NCH2CH2O), 1.99 (br. s, 2 H, NCH2CH2O), 1.53 (t, JH,H
=
[25] J. S. Matalobos, A. M. García-Deibe, M. Fondo, D. Navarro,
M. R. Bermejo, Inorg. Chem. Commun. 2004, 7, 311.
[26] A. J. Atkins, D. Black, R. L. Finn, A. Marin-Beccera, A. J.
Blake, L. Ruiz-Ramirez, W.-S. Li, M. Schröder, Dalton Trans.
2003, 2730.
3
8.1 Hz, 3 H, Zn-CH2CH3), 0.49 (q, JH,H = 8.1 Hz, 2 H, Zn-
CH2CH3) ppm. 1H NMR (400 MHz, C7D8, 301 K, selected reso-
nances): δ = 3.10 (s, 2 H, PhCH2N), 2.85 (s, 6 H, OCH3), 2.76 (t,
3JH,H
=
5.4 Hz,
4
H, NCH2CH2O), ca. 2.3 (br. s,
2
H,
=
[27] For a heptadentate monophenolate ligand leading to a dinu-
clear zinc complex, see: H. Sakiyama, R. Mochizuki, A. Suga-
wara, M. Sakamoto, Y. Nishida, M. Yamasaki, J. Chem. Soc.,
Dalton Trans. 1999, 997.
[28] The “heteroscorpionate” ligands studied by Carrano led to
complexes of different nuclearity depending on the presence of
a tBu group on a phenolate ring. See: T. C. Higgs, K. Spartal-
ian, C. J. O’Connor, B. F. Matzanke, C. J. Carrano, Inorg.
3
NCH2CH2O), ca. 2.1 (br. s, 2 H, NCH2CH2O), 1.48 (t, JH,H
3
8.1 Hz, 3 H, Zn-CH2CH3), 0.42 (q, JH,H = 8.1 Hz, 2 H, Zn-
CH2CH3) ppm. 1H NMR (400 MHz, C7D8, 200 K, selected reso-
nances): δ = around 2.8 (broad and flat resonance, 14 H), 2.26 (br.
3
s, 2 H), 1.78 (t, JH,H = 8.0 Hz, 3 H, Zn-CH2CH3), ca. 0.45 (br. s,
2 H, Zn-CH2CH3) ppm. 13C NMR (50.29 MHz, C6D6, 298 K): δ
= 135.6 (CH), 132.1 (CH), 128.4 (C), 126.2 (C), 117.1 (C), 67.9
2744
www.eurjic.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2006, 2739–2745